Transitions on a noncompact Cantor set and random walks on its defining tree
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 4, page 1090-1129
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topKigami, Jun. "Transitions on a noncompact Cantor set and random walks on its defining tree." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1090-1129. <http://eudml.org/doc/271965>.
@article{Kigami2013,
abstract = {First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of $p$-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures. Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.},
author = {Kigami, Jun},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {noncompact Cantor set; $p$-adic numbers; tree; jump process; Dirichlet forms; random walks; Martin boundary; Dirichlet forms; noncompact Cantor set; -adic numbers; tree; jump process; random walks; Martin boundary},
language = {eng},
number = {4},
pages = {1090-1129},
publisher = {Gauthier-Villars},
title = {Transitions on a noncompact Cantor set and random walks on its defining tree},
url = {http://eudml.org/doc/271965},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Kigami, Jun
TI - Transitions on a noncompact Cantor set and random walks on its defining tree
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1090
EP - 1129
AB - First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of $p$-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures. Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.
LA - eng
KW - noncompact Cantor set; $p$-adic numbers; tree; jump process; Dirichlet forms; random walks; Martin boundary; Dirichlet forms; noncompact Cantor set; -adic numbers; tree; jump process; random walks; Martin boundary
UR - http://eudml.org/doc/271965
ER -
References
top- [1] S. Albeverio and W. Karwowski. A random walk on -adics – the generator and its spectrum. Stochastic Process. Appl.53 (1994) 1–22. Zbl0810.60065MR1290704
- [2] S. Albeverio and W. Karwowski. Jump processes on leaves of multibranching trees. J. Math. Phys. 49 (2008) 093503. Zbl1152.81310MR2455842
- [3] S. Albeverio, W. Karwowski and K. Yasuda. Trace formula for -adics. Acta Appl. Math.71 (2002) 31–48. Zbl1044.11045MR1893360
- [4] S. Albeverio, W. Karwowski and X. Zhao. Asymptotics and spectral results for random walks on -adics. Stochastic Process. Appl.83 (1999) 39–59. Zbl0999.60072MR1705599
- [5] D. Aldous and N. Evans. Dirichlet forms on totally disconnected spaces and bipartite Markov chains. J. Theor. Prob.12 (1999) 839–857. Zbl0945.60064MR1702871
- [6] M. T. Barlow, A. Grigor’yan and T. Kumagai. On the equivalence of parabolic harnack inequalities and heat kernel estimates. J. Math. Soc. Japan64 (2012) 1091–1146. Zbl1281.58016MR2998918
- [7] M. T. Barlow, R. F. Bass and T. Kumagai. Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan58 (2006) 485–519. Zbl1102.60064MR2228569
- [8] R. M. Blumenthal and R. K. Getoor. Markov Processes and Potential Theory. Pure and Applied Mathematics 29. Academic Press, New York, 1968. Zbl0169.49204MR264757
- [9] L. Brekke and P. G. O. Freund. -adic numbers in physics. Phys. Rep.233 (1993) 1–66. MR1238475
- [10] P. Cartier. Fonctions harmoniques sur un arbre. In Sympos. Math., vol. 9 203–270. Academic Press, London, 1972. Zbl0283.31005MR353467
- [11] Z. Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields140 (2008) 277–317. Zbl1131.60076MR2357678
- [12] B. Dragovich, A. Y. Khrennikov, S. V. Kozrev and I. V. Volovich. On -adic mathematical physics. -Adic Numbers, Ultrametric Anal. Appl. 1 (2009) 1–17. Zbl1187.81004MR2566116
- [13] N. Evans. Local properties of Lévy processes on a totally disconnected group. J. Theoret. Probab.2 (1989) 209–259. Zbl0683.60010MR987578
- [14] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Math. 19. de Gruyter, Berlin, 1994. MR1303354
- [15] A. Grigor’yan. The heat equation on noncompact Riemannian manifolds. (in Russian). Mat. Sb. 182 (1991) 55–87. English translation in Math. USSR-Sb. 72 (1992) 47–77. MR1098839
- [16] A. Grigor’yan and A. Telcs. Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann.324 (2002) 521–556. Zbl1011.60021MR1938457
- [17] W. Karwowski and R. Vilea-Mendes. Hierarchical structures and assymetric process on -adics and adeles. J. Math. Phys.35 (1994) 4637–4650. Zbl0814.60103MR1290892
- [18] J. Kigami. Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees. Adv. Math.225 (2010) 2674–2730. Zbl1234.60077MR2680180
- [19] R. Rammal, G. Toulouse and M. A. Virasoro. Ultametricity for physicists. Rev. Mod. Phys.58 (1986) 765–788. MR854445
- [20] L. Saloff-Coste. A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices (1992) 27–38. Zbl0769.58054MR1150597
- [21] W. Woess. Random walks on infinite graphs and groups – a surveey on selected topics. Bull. London Math. Soc.26 (1994) 1–60. Zbl0830.60061MR1246471
- [22] W. Woess. Denumerable Markov Chains. European Math. Soc., Zürich, 2009. MR2548569
- [23] M. Yamasaki. Parabolic and hyperbolic infinite networks. Hiroshima Math. J.7 (1977) 135–146. Zbl0382.90088MR429377
- [24] M. Yamasaki. Discrete potentials on an infinite network. Mem. Fac. Sci. Shimane Univ.13 (1979) 31–44. Zbl0416.31012MR558311
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.