Geometry of Lipschitz percolation
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 2, page 309-326
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topGrimmett, G. R., and Holroyd, A. E.. "Geometry of Lipschitz percolation." Annales de l'I.H.P. Probabilités et statistiques 48.2 (2012): 309-326. <http://eudml.org/doc/271966>.
@article{Grimmett2012,
abstract = {We prove several facts concerning Lipschitz percolation, including the following. The critical probability pL for the existence of an open Lipschitz surface in site percolation on ℤd with d ≥ 2 satisfies the improved bound pL ≤ 1 − 1/[8(d − 1)]. Whenever p > pL, the height of the lowest Lipschitz surface above the origin has an exponentially decaying tail. For p sufficiently close to 1, the connected regions of ℤd−1 above which the surface has height 2 or more exhibit stretched-exponential tail behaviour. The last statement is proved via a stochastic inequality stating that the lowest surface is dominated stochastically by the boundary of a union of certain independent, identically distributed random subsets of ℤd.},
author = {Grimmett, G. R., Holroyd, A. E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {percolation; Lipschitz embedding; random surface; branching process; total progeny; branching processes},
language = {eng},
number = {2},
pages = {309-326},
publisher = {Gauthier-Villars},
title = {Geometry of Lipschitz percolation},
url = {http://eudml.org/doc/271966},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Grimmett, G. R.
AU - Holroyd, A. E.
TI - Geometry of Lipschitz percolation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 309
EP - 326
AB - We prove several facts concerning Lipschitz percolation, including the following. The critical probability pL for the existence of an open Lipschitz surface in site percolation on ℤd with d ≥ 2 satisfies the improved bound pL ≤ 1 − 1/[8(d − 1)]. Whenever p > pL, the height of the lowest Lipschitz surface above the origin has an exponentially decaying tail. For p sufficiently close to 1, the connected regions of ℤd−1 above which the surface has height 2 or more exhibit stretched-exponential tail behaviour. The last statement is proved via a stochastic inequality stating that the lowest surface is dominated stochastically by the boundary of a union of certain independent, identically distributed random subsets of ℤd.
LA - eng
KW - percolation; Lipschitz embedding; random surface; branching process; total progeny; branching processes
UR - http://eudml.org/doc/271966
ER -
References
top- [1] P. Balister, B. Bollobás and A. Stacey. Improved upper bounds for the critical probability of oriented percolation in two dimensions. Random Structures Algorithms5 (1994) 573–589. Zbl0807.60092MR1293080
- [2] A. Baltrūnas, D. J. Daley and C. Klüppelberg. Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times. Stochastic Process. Appl.111 (2004) 237–258. Zbl1082.60080MR2056538
- [3] J. van den Berg and H. Kesten. Inequalities with applications to percolation and reliability. J. Appl. Probab.22 (1985) 556–569. Zbl0571.60019MR799280
- [4] A. A. Borovkov and K. A. Borovkov. Asymptotic Analysis of Random Walks. Cambridge Univ. Press, Cambridge, 2008. Zbl1231.60001
- [5] D. Denisov, A. B. Dieker and V. Shneer. Large deviations for random walks under subexponentiality: The big jump domain. Ann. Probab.36 (2008) 1946–1991. Zbl1155.60019MR2440928
- [6] N. Dirr, P. W. Dondl, G. R. Grimmett, A. E. Holroyd and M. Scheutzow. Lipschitz percolation. Electron. Comm. Probab.15 (2010) 14–21. Zbl1193.60115MR2581044
- [7] N. Dirr, P. W. Dondl and M. Scheutzow. Pinning of interfaces in random media. Preprint, 2009. Available at arXiv:0911.4254. Zbl1231.35323MR2846018
- [8] R. L. Dobrushin. Gibbs state describing coexistence of phases for a three-dimensional Ising model. Theory Probab. Appl.18 (1972) 582–600. Zbl0275.60119
- [9] G. Gielis and G. R. Grimmett. Rigidity of the interface in percolation and random-cluster models. J. Statist. Phys.109 (2002) 1–37. Zbl1025.82007MR1927913
- [10] J.-B. Gouéré. Existence of subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab.36 (2008) 1209–1220. Zbl1148.60077MR2435847
- [11] G. R. Grimmett. Percolation, 2nd edition. Springer, Berlin, 1999. MR1707339
- [12] G. R. Grimmett. The Random-Cluster Model. Springer, Berlin, 2006. Zbl1045.60105MR2243761
- [13] G. R. Grimmett and P. Hiemer. Directed percolation and random walk. In In and Out of Equilibrium 273–297. V. Sidoravicius (Ed.). Birkhäuser, Boston, 2002. Zbl1010.60087MR1901958
- [14] G. R. Grimmett and A. E. Holroyd. Lattice embeddings in percolation. Ann. Probab.40 (2012) 146–161. Zbl1238.60110MR2917770
- [15] G. R. Grimmett and A. E. Holroyd. Plaquettes, spheres, and entanglement. Electron. J. Probab.15 (2010) 1415–1428. Zbl1229.60107MR2721052
- [16] C. C. Heyde. Two probability theorems and their applications to some first passage problems. J. Austral. Math. Soc.4 (1964) 214–222. Zbl0124.08501MR183004
- [17] T. M. Liggett. Survival of discrete time growth models, with applications to oriented percolation. Ann. Appl. Prob.5 (1995) 613–636. Zbl0842.60090MR1359822
- [18] R. Meester and R. Roy. Continuum Percolation. Cambridge Univ. Press, Cambridge, 1996. Zbl1146.60076MR1409145
- [19] C. E. M. Pearce and F. K. Fletcher. Oriented site percolation, phase transitions and probability bounds. J. Inequal. Pure Appl. Math. 6 (2005) Article 135. Zbl1087.60075MR2191604
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.