Optimal model selection in density estimation
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 3, page 884-908
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLerasle, Matthieu. "Optimal model selection in density estimation." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 884-908. <http://eudml.org/doc/271968>.
@article{Lerasle2012,
abstract = {In order to calibrate a penalization procedure for model selection, the statistician has to choose a shape for the penalty and a leading constant. In this paper, we study, for the marginal density estimation problem, the resampling penalties as general estimators of the shape of an ideal penalty. We prove that the selected estimator satisfies sharp oracle inequalities without remainder terms under a few assumptions on the marginal density $s$ and the collection of models. We also study the slope heuristic, which yields a data-driven choice of the leading constant in front of the penalty when the complexity of the models is well-chosen.},
author = {Lerasle, Matthieu},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {density estimation; optimal model selection; resampling methods; slope heuristic},
language = {eng},
number = {3},
pages = {884-908},
publisher = {Gauthier-Villars},
title = {Optimal model selection in density estimation},
url = {http://eudml.org/doc/271968},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Lerasle, Matthieu
TI - Optimal model selection in density estimation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 884
EP - 908
AB - In order to calibrate a penalization procedure for model selection, the statistician has to choose a shape for the penalty and a leading constant. In this paper, we study, for the marginal density estimation problem, the resampling penalties as general estimators of the shape of an ideal penalty. We prove that the selected estimator satisfies sharp oracle inequalities without remainder terms under a few assumptions on the marginal density $s$ and the collection of models. We also study the slope heuristic, which yields a data-driven choice of the leading constant in front of the penalty when the complexity of the models is well-chosen.
LA - eng
KW - density estimation; optimal model selection; resampling methods; slope heuristic
UR - http://eudml.org/doc/271968
ER -
References
top- [1] H. Akaike. Statistical predictor identification. Ann. Inst. Statist. Math.22 (1970) 203–217. Zbl0259.62076MR286233
- [2] H. Akaike. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Tsahkadsor, 1971) 267–281. Akadémiai Kiadó, Budapest, 1973. Zbl0283.62006MR483125
- [3] S. Arlot. Resampling and model selection. Ph.D. thesis, Université Paris-Sud 11, 2007. Zbl1326.62097
- [4] S. Arlot. Model selection by resampling penalization. Electron. J. Stat.3 (2009) 557–624. Zbl1326.62097MR2519533
- [5] S. Arlot and P. Massart. Data-driven calibration of penalties for least-squares regression. J. Mach. Learn. Res.10 (2009) 245–279.
- [6] A. Barron, L. Birgé and P. Massart. Risk bounds for model selection via penalization. Probab. Theory Related Fields 113(3) (1999) 301–413. Zbl0946.62036MR1679028
- [7] J.-P. Baudry, K. Maugis and B. Michel. Slope heuristics: Overview and implementation. Report INRIA, 2010. Available at http://hal.archives-ouvertes.fr/hal-00461639/fr/. Zbl1322.62007
- [8] L. Birgé. Model selection for density estimation with -loss. Preprint, 2008.
- [9] L. Birgé and P. Massart. From model selection to adaptive estimation. In Festschrift for Lucien Le Cam 55–87. Springer, New York, 1997. Zbl0920.62042MR1462939
- [10] L. Birgé and P. Massart. Minimal penalties for Gaussian model selection. Probab. Theory Related Fields 138(1–2) (2007) 33–73. Zbl1112.62082MR2288064
- [11] O. Bousquet. A Bennett concentration inequality and its application to suprema of empirical processes. C. R. Math. Acad. Sci. Paris 334(6) (2002) 495–500. Zbl1001.60021MR1890640
- [12] F. Bunea, A. B. Tsybakov and M. H. Wegkamp. Sparse density estimation with penalties. In Learning Theory 530–543. Lecture Notes in Comput. Sci. 4539. Springer, Berlin, 2007. Zbl1203.62053MR2397610
- [13] A. Célisse. Density estimation via cross validation: Model selection point of view. Preprint, 2008. Available at arXiv.org:08110802. Zbl05564640
- [14] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian and D. Picard. Density estimation by wavelet thresholding. Ann. Statist. 24(2) (1996) 508–539. Zbl0860.62032MR1394974
- [15] B. Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist. 7(1) (1979) 1–26. Zbl0406.62024MR515681
- [16] I. Gannaz and O. Wintenberger. Adaptive density estimation under dependence. ESAIM Probab. Stat.14 (2010) 151–172. Zbl1209.62056MR2654551
- [17] C. Houdré and P. Reynaud-Bouret. Exponential inequalities, with constants, for U-statistics of order two. In Stochastic Inequalities and Applications 55–69. Progr. Probab. 56. Birkhäuser, Basel, 2003. Zbl1036.60015MR2073426
- [18] T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Ann. Probab. 33(3) (2005) 1060–1077. Zbl1066.60023MR2135312
- [19] C. L. Mallows. Some comments on . Technometrics15 (1973) 661–675. Zbl0269.62061
- [20] P. Massart. Concentration Inequalities and Model Selection. Lecture Notes in Mathematics 1896. Springer, Berlin, 2007. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword by Jean Picard. Zbl1170.60006MR2319879
- [21] P. Rigollet. Adaptive density estimation using the blockwise Stein method. Bernoulli 12(2) (2006) 351–370. Zbl1098.62040MR2218559
- [22] P. Rigollet and A. B. Tsybakov. Linear and convex aggregation of density estimators. Math. Methods Statist. 16(3) (2007) 260–280. Zbl1231.62057MR2356821
- [23] M. Rudemo. Empirical choice of histograms and kernel density estimators. Scand. J. Stat. 9(2) (1982) 65–78. Zbl0501.62028MR668683
- [24] G. Schwarz. Estimating the dimension of a model. Ann. Statist.6 (1978) 461–464. Zbl0379.62005MR468014
- [25] M. Stone. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Stat. Methodol. 36 (1974) 111–147. With discussion by G. A. Barnard, A. C. Atkinson, L. K. Chan, A. P. Dawid, F. Downton, J. Dickey, A. G. Baker, O. Barndorff-Nielsen, D. R. Cox, S. Giesser, D. Hinkley, R. R. Hocking and A. S. Young and with a reply by the authors. Zbl0308.62063MR356377
- [26] M. Talagrand. New concentration inequalities in product spaces. Invent. Math. 126(3) (1996) 505–563. Zbl0893.60001MR1419006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.