Adaptive density estimation under weak dependence
Irène Gannaz; Olivier Wintenberger
ESAIM: Probability and Statistics (2010)
- Volume: 14, page 151-172
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. Andrews, Non strong mixing autoregressive processes. J. Appl. Probab.21 (1984) 930–934.
- D. Bosq and D. Guegan, Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system. Stat. Probab. Lett.25 (1995) 201–212.
- F. Comte and F. Merlevède, Adaptive estimation of the stationary density of discrete and continuous time mixing processes. ESAIM: PS6 (2002) 211–238.
- I. Daubechies, Ten Lectures on Wavelets, volume 61. SIAM Press (1992).
- J. Dedecker and C. Prieur, New dependence coefficients: Examples and applications to statistics. Probab. Theory Relat. Fields132 (2005) 203–235.
- J. Dedecker and C. Prieur, An empirical central limit theorem for dependent sequences. Stoch. Process. Appl.117 (2007) 121–142.
- J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak Dependence: Models, Theory and Applications. Springer-Verlag (2007).
- D. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Stat.24 (1996) 508–539.
- P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stoch. Process. Appl.84 (1999) 313–342.
- P. Doukhan and M. Neumann, A Bernstein type inequality for times series. Stoch. Process. Appl.117 (2007) 878–903.
- P. Doukhan, G. Teyssière and P. Winant, Vector valued ARCH infinity processes, in Dependence in Probability and Statistics . Lect. Notes Statist. Springer, New York (2006).
- P. Doukhan and L. Truquet, A fixed point approach to model random fields. Alea2 (2007) 111–132.
- P. Doukhan and O. Wintenberger, Weakly dependent chains with infinite memory. Stoch. Process. Appl.118 (2008) 1997–2013.
- P. Doukhan and O. Wintenberger, Invariance principle for new weakly dependent stationary models. Probab. Math. Statist.27 (2007) 45–73.
- S. Gouëzel, Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields128 (2004) 82–122.
- W. Hardle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelets Approximation and Statistical Applications. Lect. Notes Statist. 129. Springer-Verlag (1998).
- A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on . Bernoulli, 10 (2004) 187–220.
- C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency. Ergodic Theory Dynam. Syst.19 (1999) 671–686.
- S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intelligence11 (1989) 674–693.
- V. Maume-Deschamps, Exponential inequalities and functional estimations for weak dependent data; applications to dynamical systems. Stoch. Dynam.6 (2006) 535–560.
- Y. Meyer, Wavelets and Operators. Cambridge University Press (1992).
- C. Prieur, Applications statistiques de suites faiblement dépendantes et de systèmes dynamiques. Ph.D. thesis, CREST, 2001.
- N. Ragache and O. Wintenberger, Convergence rates for density estimators of weakly dependent time series, in Dependence in Probability and Statistics , P. Bertail, P. Doukhan, and P. Soulier (Eds.). Lect. Notes Statist. 187. Springer, New York (2006), pp. 349–372.
- K. Tribouley and G. Viennet, -adaptive density estimation in a β-mixing framework. Ann. Inst. H. Poincaré, B34 (1998) 179–208.
- M.-L. Vanharen, Estimation par ondelettes dans les systèmes dynamiques. C. R. Acad. Sci. Paris342 (2006) 523–525.
- M. Vannucci, Nonparametric density estimation using wavelets. Tech. Rep., Texas A and M University, 1998.
- M. Viana, Stochastic dynamics of deterministic systems. Available at (1997). URIhttp://w3.impa.br/~viana
- B. Vidakovic, Pollen bases and Daubechies-Lagarias algorithm in MATLAB (2002). Available at . URIhttp://www2.isye.gatech.edu/~brani/datasoft/DL.pdf
- Wavelab. . URIhttp://www-stat.stanford.edu/~wavelab/
- L. Young, Recurrence times and rates of mixing. Isr. J. Math.110 (1999) 0021–2172.