Universality in the bulk of the spectrum for complex sample covariance matrices
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 1, page 80-106
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topPéché, Sandrine. "Universality in the bulk of the spectrum for complex sample covariance matrices." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 80-106. <http://eudml.org/doc/271975>.
@article{Péché2012,
abstract = {We consider complex sample covariance matrices MN = (1/N)YY* where Y is a N × p random matrix with i.i.d. entries Yij, 1 ≤ i ≤ N, 1 ≤ j ≤ p, with distribution F. Under some regularity and decay assumptions on F, we prove universality of some local eigenvalue statistics in the bulk of the spectrum in the limit where N → ∞ and limN→∞ p/N = γ for any real number γ ∈ (0, ∞).},
author = {Péché, Sandrine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrix; bulk universality; sample covariance matrices},
language = {eng},
number = {1},
pages = {80-106},
publisher = {Gauthier-Villars},
title = {Universality in the bulk of the spectrum for complex sample covariance matrices},
url = {http://eudml.org/doc/271975},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Péché, Sandrine
TI - Universality in the bulk of the spectrum for complex sample covariance matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 80
EP - 106
AB - We consider complex sample covariance matrices MN = (1/N)YY* where Y is a N × p random matrix with i.i.d. entries Yij, 1 ≤ i ≤ N, 1 ≤ j ≤ p, with distribution F. Under some regularity and decay assumptions on F, we prove universality of some local eigenvalue statistics in the bulk of the spectrum in the limit where N → ∞ and limN→∞ p/N = γ for any real number γ ∈ (0, ∞).
LA - eng
KW - random matrix; bulk universality; sample covariance matrices
UR - http://eudml.org/doc/271975
ER -
References
top- [1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. Zbl0643.33001MR167642
- [2] Z. D. Bai. Convergence rate of expected spectral distributions of large random matrices. II Sample covariance matrices. Ann. Probab. 21 (1993) 649–672. Zbl0779.60025MR1217560
- [3] Z. D. Bai, B. Miao and J. Tsay. Remarks on the convergence rate of the spectral distributions of Wigner matrices. J. Theoret. Probab.12 (1999) 301–311. Zbl0928.60007MR1684746
- [4] G. Ben Arous and S. Péché. Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. LVIII (2005) 1–42. Zbl1075.62014MR2162782
- [5] E. Brézin and S. Hikami. Spectral form factor in random matrix theory. Phys. Rev. E55 (1997) 4067–4083. MR1449379
- [6] E. Brézin and S. Hikami. Correlations of nearby levels induced by a random potential. Nucl. Phys. B479 (1996) 697–706. Zbl0925.82117MR1418841
- [7] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics 3. American Mathematical Society, Providence, RI, 1999. Zbl0997.47033MR1677884
- [8] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides and X. Zhou. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math.52 (1999) 1335–1425. Zbl0944.42013MR1702716
- [9] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides and X. Zhou. Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math.52 (1999) 1491–1552. Zbl1026.42024MR1711036
- [10] F. J. Dyson. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys.3 (1962) 1191–1198. Zbl0111.32703MR148397
- [11] L. Erdős, B. Schlein and H.-T. Yau. Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys.287 (2009) 641–655. Zbl1186.60005MR2481753
- [12] L. Erdős, B. Schlein and H.-T. Yau. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab.37 (2009) 815–852. Zbl1175.15028MR2537522
- [13] L. Erdős, B. Schlein and H.-T. Yau. Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Notices2010 (2010) 436–479. Zbl1204.15043MR2587574
- [14] L. Erdős, S. Péché, J. Ramirez, B. Schlein and H.-T. Yau. Bulk universality for Wigner matrices. Comm. Pure Appl. Math.63 (2010) 895–925. Zbl1216.15025MR2662426
- [15] L. Erdős, J. Ramirez, B. Schlein, T. Tao, V. Vu and H.-T. Yau. Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Research Letters17 (2010) 667–674. Zbl1277.15027MR2661171
- [16] A. Guionnet and O. Zeitouni. Concentration of the spectral measure for large random matrices. Electron. Comm. Probab.5 (2000) 119–136. Zbl0969.15010MR1781846
- [17] K. Johansson. Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys.215 (2001) 683–705. Zbl0978.15020MR1810949
- [18] V. A. Marčenko and L. Pastur. The distribution of eigenvalues for some sets of random matrices. Math. Sb.72 (1967) 507–536. Zbl0152.16101MR208649
- [19] M. L. Mehta. Random Matrices. Academic Press, New York, 1991. Zbl0780.60014MR1083764
- [20] J. W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivariate Anal.55 (1995) 331–339. Zbl0851.62015MR1370408
- [21] F. Olver. Asymptotics and Special Functions. Computer Science and Applied Mathematics. Academic Press, New York–London, 1974. Zbl0303.41035MR435697
- [22] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics. Preprint. Available at arxiv:0906.0510. Zbl1217.15043MR2784665
- [23] T. Tao and V. Vu. Random covariance matrices: Universality of local statistics of eigenvalues. Preprint. Available at arXiv:0912.0966. Zbl1247.15036MR2962092
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.