Restricted exchangeable partitions and embedding of associated hierarchies in continuum random trees

Bo Chen; Matthias Winkel

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 3, page 839-872
  • ISSN: 0246-0203

Abstract

top
We introduce the notion of a restricted exchangeable partition of . We obtain integral representations, consider associated fragmentations, embeddings into continuum random trees and convergence to such limit trees. In particular, we deduce from the general theory developed here a limit result conjectured previously for Ford’s alpha model and its extension, the alpha-gamma model, where restricted exchangeability arises naturally.

How to cite

top

Chen, Bo, and Winkel, Matthias. "Restricted exchangeable partitions and embedding of associated hierarchies in continuum random trees." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 839-872. <http://eudml.org/doc/271978>.

@article{Chen2013,
abstract = {We introduce the notion of a restricted exchangeable partition of $\mathbb \{N\}$. We obtain integral representations, consider associated fragmentations, embeddings into continuum random trees and convergence to such limit trees. In particular, we deduce from the general theory developed here a limit result conjectured previously for Ford’s alpha model and its extension, the alpha-gamma model, where restricted exchangeability arises naturally.},
author = {Chen, Bo, Winkel, Matthias},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {exchangeability; hierarchy; coalescent; fragmentation; continuum random tree; renewal theory},
language = {eng},
number = {3},
pages = {839-872},
publisher = {Gauthier-Villars},
title = {Restricted exchangeable partitions and embedding of associated hierarchies in continuum random trees},
url = {http://eudml.org/doc/271978},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Chen, Bo
AU - Winkel, Matthias
TI - Restricted exchangeable partitions and embedding of associated hierarchies in continuum random trees
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 839
EP - 872
AB - We introduce the notion of a restricted exchangeable partition of $\mathbb {N}$. We obtain integral representations, consider associated fragmentations, embeddings into continuum random trees and convergence to such limit trees. In particular, we deduce from the general theory developed here a limit result conjectured previously for Ford’s alpha model and its extension, the alpha-gamma model, where restricted exchangeability arises naturally.
LA - eng
KW - exchangeability; hierarchy; coalescent; fragmentation; continuum random tree; renewal theory
UR - http://eudml.org/doc/271978
ER -

References

top
  1. [1] D. Aldous. Exchangeability and related topics. In Lectures on Probability Theory and Statistics (Saint-Flour, 1983) 1–198. Lecture Notes in Math. 1117. Springer, Berlin, 1985. Zbl0562.60042MR883646
  2. [2] D. Aldous. The continuum random tree. I. Ann. Probab. 19(1) (1991) 1–28. Zbl0722.60013MR1085326
  3. [3] D. Aldous. The continuum random tree. III. Ann. Probab. 21(1) (1993) 248–289. Zbl0791.60009MR1207226
  4. [4] D. Aldous. Probability distributions on cladograms. In Random Discrete Structures (Minneapolis, MN, 1993) 1–18. IMA Vol. Math. Appl. 76. Springer, New York, 1996. Zbl0841.92015MR1395604
  5. [5] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003MR1406564
  6. [6] J. Bertoin. Homogeneous fragmentation processes. Probab. Theory Related Fields 121(3) (2001) 301–318. Zbl0992.60076MR1867425
  7. [7] J. Bertoin. The asymptotic behavior of fragmentation processes. J. Euro. Math. Soc.5 (2003) 395–416. Zbl1042.60042MR2017852
  8. [8] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. Zbl1107.60002MR2253162
  9. [9] J. Bertoin and A. Rouault. Discretization methods for homogeneous fragmentations. J. London Math. Soc. (2) 72(1) (2005) 91–109. Zbl1077.60053MR2145730
  10. [10] B. Chen, D. Ford and M. Winkel. A new family of Markov branching trees: The alpha-gamma model. Electron. J. Probab. 14(15) (2009) 400–430 (electronic). Zbl1190.60081MR2480547
  11. [11] R. Durrett. Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1996. Zbl1202.60002MR1609153
  12. [12] D. J. Ford. Probabilities on cladograms: Introduction to the alpha model. Preprint, 2005. Available at arXiv:math/0511246v1. MR2708802
  13. [13] A. Gnedin. Constrained exchangeable partitions. In Fourth Colloquium on Mathematics and Computer Science, Vol. AG 391–398. Discrete Mathematics and Theoretical Computer Science, Nancy, 2006. Zbl1195.60016MR2509650
  14. [14] A. Gnedin, J. Pitman and M. Yor. Asymptotic laws for compositions derived from transformed subordinators. Ann. Probab. 34(2) (2006) 468–492. Zbl1142.60327MR2223948
  15. [15] A. Gut. On the moments and limit distributions of some first passage times. Ann. Probab.2 (1974) 277–308. Zbl0278.60031MR394857
  16. [16] B. Haas. Loss of mass in deterministic and random fragmentations. Stochastic Process. Appl. 106(2) (2003) 245–277. Zbl1075.60553MR1989629
  17. [17] B. Haas and G. Miermont. The genealogy of self-similar fragmentations with negative index as a continuum random tree. Electron. J. Probab. 9(4) (2004) 57–97 (electronic). Zbl1064.60076MR2041829
  18. [18] B. Haas, G. Miermont, J. Pitman and M. Winkel. Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models. Ann. Probab. 36(5) (2008) 1790–1837. Zbl1155.92033MR2440924
  19. [19] B. Haas, J. Pitman and M. Winkel. Spinal partitions and invariance under re-rooting of continuum random trees. Ann. Probab. 37(4) (2009) 1381–1411. Zbl1181.60128MR2546748
  20. [20] C. Haulk and J. Pitman. A representation of exchangeable hierarchies by sampling from real trees. Preprint, 2011. Available at arXiv:1101.5619v1. 
  21. [21] S. V. Kerov. Combinatorial examples in the theory of AF-algebras. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 172(Differentsialnaya Geom. Gruppy Li i Mekh. Vol. 10) (1989) 55–67, 169–170. Zbl0747.46045MR1015698
  22. [22] J. F. C. Kingman. The representation of partition structures. J. London Math. Soc. (2) 18(2) (1978) 374–380. Zbl0415.92009MR509954
  23. [23] J. F. C. Kingman. Poisson Processes. Oxford Studies in Probability 3. Oxford Univ. Press, New York, 1993. Zbl0771.60001MR1207584
  24. [24] P. McCullagh, J. Pitman and M. Winkel. Gibbs fragmentation trees. Bernoulli 14(4) (2008) 988–1002. Zbl1158.60373MR2543583
  25. [25] G. Miermont. Self-similar fragmentations derived from the stable tree. I. Splitting at heights. Probab. Theory Related Fields 127(3) (2003) 423–454. Zbl1042.60043MR2018924
  26. [26] J. Pitman. Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102(2) (1995) 145–158. Zbl0821.60047MR1337249
  27. [27] J. Pitman. Combinatorial Stochastic Processes. Lecture Notes in Mathematics 1875. Springer, Berlin, 2006. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002. Zbl1103.60004MR2245368
  28. [28] J. Pitman and M. Winkel. Regenerative tree growth: Binary self-similar continuum random trees and Poisson–Dirichlet compositions. Ann. Probab. 37(5) (2009) 1999–2041. Zbl1189.60162MR2561439
  29. [29] E. Schroeder. Vier combinatorische Probleme. Z. f. Math. Phys. 15 (1870) 361–376. JFM02.0108.04
  30. [30] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge Studies in Advanced Mathematics 62. Cambridge Univ. Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin. Zbl0978.05002MR1676282
  31. [31] A. M. Vershik and S. V. Kerov. Asymptotic theory of the characters of a symmetric group. Funktsional. Anal. i Prilozhen. 15(4) (1981) 15–27, 96. Zbl0507.20006MR639197

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.