Displaying similar documents to “Restricted exchangeable partitions and embedding of associated hierarchies in continuum random trees”

On two fragmentation schemes with algebraic splitting probability

M. Ghorbel, T. Huillet (2006)

Applicationes Mathematicae

Similarity:

Consider the following inhomogeneous fragmentation model: suppose an initial particle with mass x₀ ∈ (0,1) undergoes splitting into b > 1 fragments of random sizes with some size-dependent probability p(x₀). With probability 1-p(x₀), this particle is left unchanged forever. Iterate the splitting procedure on each sub-fragment if any, independently. Two cases are considered: the stable and unstable case with p ( x ) = x a and p ( x ) = 1 - x a respectively, for some a > 0. In the first (resp. second) case,...

Branching processes, and random-cluster measures on trees

Geoffrey Grimmett, Svante Janson (2005)

Journal of the European Mathematical Society

Similarity:

Random-cluster measures on infinite regular trees are studied in conjunction with a general type of ‘boundary condition’, namely an equivalence relation on the set of infinite paths of the tree. The uniqueness and non-uniqueness of random-cluster measures are explored for certain classes of equivalence relations. In proving uniqueness, the following problem concerning branching processes is encountered and answered. Consider bond percolation on the family-tree T of a branching process....

Closure for spanning trees and distant area

Jun Fujisawa, Akira Saito, Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A k-ended tree is a tree with at most k endvertices. Broersma and Tuinstra [3] have proved that for k ≥ 2 and for a pair of nonadjacent vertices u, v in a graph G of order n with d e g G u + d e g G v n - 1 , G has a spanning k-ended tree if and only if G+uv has a spanning k-ended tree. The distant area for u and v is the subgraph induced by the set of vertices that are not adjacent with u or v. We investigate the relationship between the condition on d e g G u + d e g G v and the structure of the distant area for u and v. We prove...

Tree pattern matching from regular tree expressions

Ahlem Belabbaci, Hadda Cherroun, Loek Cleophas, Djelloul Ziadi (2018)

Kybernetika

Similarity:

In this work we deal with tree pattern matching over ranked trees, where the pattern set to be matched against is defined by a regular tree expression. We present a new method that uses a tree automaton constructed inductively from a regular tree expression. First we construct a special tree automaton for the regular tree expression of the pattern E , which is somehow a generalization of Thompson automaton for strings. Then we run the constructed automaton on the subject tree t . The pattern...

Pruning Galton–Watson trees and tree-valued Markov processes

Romain Abraham, Jean-François Delmas, Hui He (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We present a new pruning procedure on discrete trees by adding marks on the nodes of trees. This procedure allows us to construct and study a tree-valued Markov process { 𝒢 ( u ) } by pruning Galton–Watson trees and an analogous process { 𝒢 * ( u ) } by pruning a critical or subcritical Galton–Watson tree conditioned to be infinite. Under a mild condition on offspring distributions, we show that the process { 𝒢 ( u ) } run until its ascension time has a representation in terms of { 𝒢 * ( u ) } . A similar result was obtained by...

A partition of the Catalan numbers and enumeration of genealogical trees

Rainer Schimming (1996)

Discussiones Mathematicae Graph Theory

Similarity:

A special relational structure, called genealogical tree, is introduced; its social interpretation and geometrical realizations are discussed. The numbers C n , k of all abstract genealogical trees with exactly n+1 nodes and k leaves is found by means of enumeration of code words. For each n, the C n , k form a partition of the n-th Catalan numer Cₙ, that means C n , 1 + C n , 2 + . . . + C n , n = C .

Collisions of random walks

Martin T. Barlow, Yuval Peres, Perla Sousi (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

A recurrent graph G has the infinite collision property if two independent random walks on G , started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton–Watson tree with finite variance conditioned to survive, the incipient infinite cluster in d with d 19 and the uniform spanning tree in 2 all have the infinite collision property. For power-law combs and spherically...

Uniform distribution modulo one and binary search trees

Michel Dekking, Peter Van der Wal (2002)

Journal de théorie des nombres de Bordeaux

Similarity:

Any sequence x = ( x k ) k = 1 of distinct numbers from [0,1] generates a binary tree by storing the numbers consecutively at the nodes according to a left-right algorithm (or equivalently by sorting the numbers according to the Quicksort algorithm). Let H n ( x ) be the height of the tree generated by x 1 , , x n . Obviously log n log 2 - 1 H n ( x ) n - 1 . If the sequences x are generated by independent random variables having the uniform distribution on [0, 1], then it is well known that there exists c > 0 such that...

A note on the cubical dimension of new classes of binary trees

Kamal Kabyl, Abdelhafid Berrachedi, Éric Sopena (2015)

Czechoslovak Mathematical Journal

Similarity:

The cubical dimension of a graph G is the smallest dimension of a hypercube into which G is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with 2 n vertices, n 1 , is n . The 2-rooted complete binary tree of depth n is obtained from two copies of the complete binary tree of depth n by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice...

Homeomorphisms of composants of Knaster continua

Sonja Štimac (2002)

Fundamenta Mathematicae

Similarity:

The Knaster continuum K p is defined as the inverse limit of the pth degree tent map. On every composant of the Knaster continuum we introduce an order and we consider some special points of the composant. These are used to describe the structure of the composants. We then prove that, for any integer p ≥ 2, all composants of K p having no endpoints are homeomorphic. This generalizes Bandt’s result which concerns the case p = 2.

On the (2,2)-domination number of trees

You Lu, Xinmin Hou, Jun-Ming Xu (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Let γ(G) and γ 2 , 2 ( G ) denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that ( 2 ( γ ( T ) + 1 ) ) / 3 γ 2 , 2 ( T ) 2 γ ( T ) . Moreover, we characterize all the trees achieving the equalities.

Chain conditions in maximal models

Paul Larson, Stevo Todorčević (2001)

Fundamenta Mathematicae

Similarity:

We present two m a x varations which create maximal models relative to certain counterexamples to Martin’s Axiom, in hope of separating certain classical statements which fall between MA and Suslin’s Hypothesis. One of these models is taken from [19], in which we maximize relative to the existence of a certain type of Suslin tree, and then force with that tree. In the resulting model, all Aronszajn trees are special and Knaster’s forcing axiom ₃ fails. Of particular interest is the still...

Decompositions of the plane and the size of the continuum

Ramiro de la Vega (2009)

Fundamenta Mathematicae

Similarity:

We consider a triple ⟨E₀,E₁,E₂⟩ of equivalence relations on ℝ² and investigate the possibility of decomposing the plane into three sets ℝ² = S₀ ∪ S₁ ∪ S₂ in such a way that each S i intersects each E i -class in finitely many points. Many results in the literature, starting with a famous theorem of Sierpiński, show that for certain triples the existence of such a decomposition is equivalent to the continuum hypothesis. We give a characterization in ZFC of the triples for which the decomposition...

Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime

Nathanaël Enriquez, Christophe Sabot, Olivier Zindy (2009)

Bulletin de la Société Mathématique de France

Similarity:

We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height log t . In the quenched setting, we also sharply estimate the distribution of the walk at time t .

The tree property at both ω + 1 and ω + 2

Laura Fontanella, Sy David Friedman (2015)

Fundamenta Mathematicae

Similarity:

We force from large cardinals a model of ZFC in which ω + 1 and ω + 2 both have the tree property. We also prove that if we strengthen the large cardinal assumptions, then in the final model ω + 2 even satisfies the super tree property.

Coherent randomness tests and computing the K -trivial sets

Laurent Bienvenu, Noam Greenberg, Antonín Kučera, André Nies, Dan Turetsky (2016)

Journal of the European Mathematical Society

Similarity:

We introduce Oberwolfach randomness, a notion within Demuth’s framework of statistical tests with moving components; here the components’ movement has to be coherent across levels. We show that a ML-random set computes all K -trivial sets if and only if it is not Oberwolfach random, and indeed that there is a K -trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis,...

Excited against the tide: a random walk with competing drifts

Mark Holmes (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study excited random walks in i.i.d. random cookie environments in high dimensions, where the k th cookie at a site determines the transition probabilities (to the left and right) for the k th departure from that site. We show that in high dimensions, when the expected right drift of the first cookie is sufficiently large, the velocity is strictly positive, regardless of the strengths and signs of subsequent cookies. Under additional conditions on the cookie environment, we show that...

Compactness properties of weighted summation operators on trees

Mikhail Lifshits, Werner Linde (2011)

Studia Mathematica

Similarity:

We investigate compactness properties of weighted summation operators V α , σ as mappings from ℓ₁(T) into q ( T ) for some q ∈ (1,∞). Those operators are defined by ( V α , σ x ) ( t ) : = α ( t ) s t σ ( s ) x ( s ) , t ∈ T, where T is a tree with partial order ⪯. Here α and σ are given weights on T. We introduce a metric d on T such that compactness properties of (T,d) imply two-sided estimates for e ( V α , σ ) , the (dyadic) entropy numbers of V α , σ . The results are applied to concrete trees, e.g. moderately increasing, biased or binary trees and to weights...