Scale-free percolation
Maria Deijfen; Remco van der Hofstad; Gerard Hooghiemstra
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 3, page 817-838
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Aizenman and C. M. Newman. Discontinuity of the percolation density in one dimensional percolation models. Comm. Math. Phys.107 (1986) 611–647. Zbl0613.60097MR868738
- [2] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab.25 (1997) 812–854. Zbl0877.60010MR1434128
- [3] I. Benjamini, H. Kesten, Y. Peres and O. Schramm. Geometry of the uniform spanning forest: Transitions in diameters 4, 8, 12, … . Ann. of Math. 160 (2004) 465–491. Zbl1071.60006MR2123930
- [4] N. Berger. Transience, recurrence and critical behavior for long-range percolation. Comm. Math. Phys. 226 (3) (2002) 531–558. Zbl0991.82017MR1896880
- [5] N. Berger. A lower bound for chemical distances in sparse long-range percolation models. Preprint, 2004. Available at arXiv:math/0409021v1.
- [6] S. Bhamidi, R. van der Hofstad and J. van Leeuwaarden. Novel scaling limits for critical inhomogeneous random graphs. Preprint, 2009. Zbl1257.05157MR3050505
- [7] S. Bhamidi, R. van der Hofstad and J. van Leeuwaarden. Scaling limits for critical inhomogeneous random graphs with finite third moments. Electron. J. Probab.15 (2010) 1682–1702. Zbl1228.60018MR2735378
- [8] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge, 1987. Zbl0617.26001MR898871
- [9] M. Biskup. On the scaling of the chemical distance in long range percolation models. Ann. Probab.32 (2004) 2933–2977. Zbl1072.60084MR2094435
- [10] B. Bollobás and O. Riordan. Percolation. Cambridge Univ. Press, New York, 2006. Zbl1118.60001MR2283880
- [11] B. Bollobás, O. Riordan and S. Janson. The phase transition in inhomogeneous random graphs. Rand. Struct. Alg.31 (2007) 3–122. Zbl1123.05083MR2337396
- [12] T. Britton, M. Deijfen and A. Martin-Löf. Generating simple random graphs with prescribed degree distribution. J. Stat. Phys.124 (2006) 1377–1397. Zbl1106.05086MR2266448
- [13] F. Chung and L. Lu. The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA99 (2002) 15879–15882. Zbl1064.05137MR1944974
- [14] F. Chung and L. Lu. Connected components in random graphs with given expected degree sequences. Ann. Comb.6 (2002) 125–145. Zbl1009.05124MR1955514
- [15] D. Coppersmith, D. Gamarnik and M. Sviridenko. The diameter of a long-range percolation graph. Rand. Struct. Alg.21 (2002) 1–13. Zbl1011.60086MR1913075
- [16] S. Dommers, R. van der Hofstad and G. Hooghiemstra. Diameters in preferential attachment graphs. J. Stat. Phys.139 (2010) 72–107. Zbl1191.82020MR2602984
- [17] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edition. Wiley, New York, 1971. Zbl0039.13201MR270403
- [18] A. Gandolfi, M. S. Keane and C. M. Newman. Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Related Fields92 (1992) 511–527. Zbl0767.60098MR1169017
- [19] G. Grimmett. Percolation, 2nd edition. Springer, Berlin, 1999. Zbl0926.60004MR1707339
- [20] H. Hatami and M. Molloy. The scaling window for a random graph with a given degree sequence. Preprint, 2009. Zbl1247.05218MR2809753
- [21] M. Heydenreich, R. van der Hofstad and A. Sakai. Mean-field behavior for long- and finite range ising model, percolation and self-avoiding walk. J. Stat. Phys. 132 (5) (2008) 1001–1049. Zbl1152.82007MR2430773
- [22] S. Janson. Asymptotic equivalence and contiguity of some random graphs. Rand. Struct. Alg. 36 (1) 201026–45. Zbl1209.05225MR2591045
- [23] T. M. Liggett, R. H. Schonmann and A. M. Stacey. Domination by product measure. Ann. Probab.25 (1997) 71–95. Zbl0882.60046MR1428500
- [24] R. Meester and R. Roy. Continuum Percolation. Cambridge Univ. Press, Cambridge, 1996. Zbl1146.60076MR1409145
- [25] C. M. Newman and L. S. Schulman. One-dimensional percolation models: The existence of a transition for . Comm. Math. Phys.104 (1986) 547–571. Zbl0604.60097MR841669
- [26] I. Norros and H. Reittu. On a conditionally Poissonian graph process. Adv. in Appl. Probab.38 (2006) 59–75. Zbl1096.05047MR2213964
- [27] L. S. Schulman. Long range percolation in one dimension. J. Phys. A 16 (1983) L639–L641. MR701466
- [28] S. Smirnov. Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 (3) (2001) 239–244. Zbl0985.60090MR1851632
- [29] T. S. Turova. Diffusion approximation for the components in critical inhomogeneous random graphs of rank 1. Preprint, 2009. Zbl1278.05227MR3124693
- [30] J. E. Yukich. Ultra-small scale-free geometric networks. J. Appl. Probab.43 (2006) 665–677. Zbl1120.60095MR2274791
- [31] R. van der Hofstad. Critical behavior in inhomogeneous random graphs. Preprint, 2009. Zbl1269.05101MR3068034
- [32] R. van der Hofstad, G. Hooghiemstra and P. Van Mieghem. Distances in random graphs with finite variance degrees. Rand. Struct. Alg.26 (2005) 76–123. Zbl1074.05083MR2150017
- [33] R. van der Hofstad, G. Hooghiemstra and D. Znamenski. Distances in random graphs with finite mean and infinite variance degrees. Electron. J. Probab.12 (2007) 703–766. Zbl1126.05090MR2318408