# Tail asymptotics for exponential functionals of Lévy processes: The convolution equivalent case

Annales de l'I.H.P. Probabilités et statistiques (2012)

- Volume: 48, Issue: 4, page 1081-1102
- ISSN: 0246-0203

## Access Full Article

top## Abstract

top## How to cite

topRivero, Víctor. "Tail asymptotics for exponential functionals of Lévy processes: The convolution equivalent case." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 1081-1102. <http://eudml.org/doc/271989>.

@article{Rivero2012,

abstract = {We determine the rate of decrease of the right tail distribution of the exponential functional of a Lévy process with a convolution equivalent Lévy measure. Our main result establishes that it decreases as the right tail of the image under the exponential function of the Lévy measure of the underlying Lévy process. The method of proof relies on fluctuation theory of Lévy processes and an explicit pathwise representation of the exponential functional as the exponential functional of a bivariate subordinator. Our techniques allow us to establish analogous results under the excursion measure of the underlying Lévy process reflected in its past infimum.},

author = {Rivero, Víctor},

journal = {Annales de l'I.H.P. Probabilités et statistiques},

keywords = {convolution equivalent distributions; exponential functionals of Lévy processes; fluctuation theory of Lévy processes; exponential functionals of Levy processes; fluctuation theory of Levy processes},

language = {eng},

number = {4},

pages = {1081-1102},

publisher = {Gauthier-Villars},

title = {Tail asymptotics for exponential functionals of Lévy processes: The convolution equivalent case},

url = {http://eudml.org/doc/271989},

volume = {48},

year = {2012},

}

TY - JOUR

AU - Rivero, Víctor

TI - Tail asymptotics for exponential functionals of Lévy processes: The convolution equivalent case

JO - Annales de l'I.H.P. Probabilités et statistiques

PY - 2012

PB - Gauthier-Villars

VL - 48

IS - 4

SP - 1081

EP - 1102

AB - We determine the rate of decrease of the right tail distribution of the exponential functional of a Lévy process with a convolution equivalent Lévy measure. Our main result establishes that it decreases as the right tail of the image under the exponential function of the Lévy measure of the underlying Lévy process. The method of proof relies on fluctuation theory of Lévy processes and an explicit pathwise representation of the exponential functional as the exponential functional of a bivariate subordinator. Our techniques allow us to establish analogous results under the excursion measure of the underlying Lévy process reflected in its past infimum.

LA - eng

KW - convolution equivalent distributions; exponential functionals of Lévy processes; fluctuation theory of Lévy processes; exponential functionals of Levy processes; fluctuation theory of Levy processes

UR - http://eudml.org/doc/271989

ER -

## References

top- [1] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003
- [2] J. Bertoin and R. A. Doney. Cramér’s estimate for Lévy processes. Statist. Probab. Lett. 21 (5) (1994) 363–365. Zbl0809.60085
- [3] J. Bertoin and M. Yor. Exponential functionals of Lévy processes. Probab. Surv. 2 (2005) 191–212 (electronic). Zbl1189.60096
- [4] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge, 1989. Zbl0667.26003
- [5] M.-E. Caballero and V. Rivero. On the asymptotic behaviour of increasing self-similar Markov processes. Electron. J. Probab.14 (2009) 865–894. Zbl1191.60047
- [6] P. Carmona, F. Petit and M. Yor. On the distribution and asymptotic results for exponential functionals of Lévy processes. In Exponential Functionals and Principal Values Related to Brownian Motion 73–130. Rev. Mat. Iberoamericana, Madrid, 1997. Zbl0905.60056
- [7] L. Chaumont, A. E. Kyprianou, J. C. Pardo and V. Rivero. Fluctuation theory and exit systems for positive self-similar Markov processes. Ann. Probab. 40 (1) (2012) 245–279. Zbl1241.60019MR2917773
- [8] R. A. Doney. Fluctuation Theory for Lévy Processes. Lectures from the 35th Summer School on Probability Theory Held in Saint-Flour, July 6–23, 2005. Lecture Notes in Mathematics 1897. Springer, Berlin, 2007. Zbl1128.60036MR2320889
- [9] R. A. Doney and R. A. Maller. Cramér’s estimate for a reflected Lévy process. Ann. Appl. Probab.15 (2005) 1445–1450. Zbl1069.60045MR2134110
- [10] P. Embrechts and C. M. Goldie. Comparing the tail of an infinitely divisible distribution with integrals of its Lévy measure. Ann. Probab. 9 (3) (1981) 468–481. Zbl0459.60017MR614631
- [11] D. R. Grey. Regular variation in the tail behaviour of solutions of random difference equations. Ann. Appl. Probab. 4 (1) (1994) 169–183. Zbl0802.60057MR1258178
- [12] B. Haas. Loss of mass in deterministic and random fragmentations. Stochastic Process. Appl. 106 (2) (2003) 245–277. Zbl1075.60553MR1989629
- [13] H. Hult and F. Lindskog. Extremal behavior of stochastic integrals driven by regularly varying Lévy processes. Ann. Probab. 35 (1) (2007) 309–339. Zbl1121.60029MR2303951
- [14] C. Klüppelberg, A. E. Kyprianou and R. A. Maller. Ruin probabilities and overshoots for general Lévy insurance risk processes. Ann. Appl. Probab. 14 (4) (2004) 1766–1801. Zbl1066.60049MR2099651
- [15] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Universitext. Springer, Berlin, 2006. Zbl1104.60001MR2250061
- [16] K. Maulik and B. Zwart. Tail asymptotics for exponential functionals of Lévy processes. Stochastic Process. Appl. 116 (2) (2006) 156–177. Zbl1090.60046MR2197972
- [17] A. G. Pakes. Convolution equivalence and infinite divisibility. J. Appl. Probab. 41 (2) (2004) 407–424. Zbl1051.60019MR2052581
- [18] A. G. Pakes. Convolution equivalence and infinite divisibility: Corrections and corollaries. J. Appl. Probab. 44 (2) (2007) 295–305. Zbl1132.60015MR2340199
- [19] J. C. Pardo. On the future infimum of positive self-similar Markov processes. Stochastics 78 (3) (2006) 123–155. Zbl1100.60018MR2241913
- [20] P. Patie. Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 (3) (2009) 667–684. Zbl1180.31010MR2548498
- [21] P. Patie. Law of the exponential functional of one-sided Lévy processes and Asian options. C. R. Math. Acad. Sci. Paris 347 (7–8) (2009) 407–411. Zbl1162.60015MR2537239
- [22] P. Patie. Law of the absorption time of some positive self-similar Markov processes. Ann. Probab. 40 (2) (2012) 765–787. Zbl1241.60020MR2952091
- [23] V. Rivero. A law of iterated logarithm for increasing self-similar Markov processes. Stoch. Stoch. Rep. 75 (6) (2003) 443–472. Zbl1053.60027MR2029617
- [24] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér’s condition. Bernoulli 11 (3) (2005) 471–509. Zbl1077.60055MR2146891
- [25] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér’s condition II. Bernoulli13 (2007) 1053–1070. Zbl1132.60056MR2364226
- [26] V. Rivero. Sina’s condition for real valued Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 43 (3) (2007) 299–319. Zbl1115.60049MR2319699
- [27] K.-I. Sato and M. Yamazato. Stationary processes of Ornstein–Uhlenbeck type. In Probability Theory and Mathematical Statistics (Tbilisi, 1982) 541–551. Lecture Notes in Math. 1021. Springer, Berlin, 1983. Zbl0532.60065MR736019
- [28] K.-I. Sato and M. Yamazato. Operator-self-decomposable distributions as limit distributions of processes of Ornstein–Uhlenbeck type. Stochastic Process. Appl. 17 (1) (1984) 73–100. Zbl0533.60021MR738769
- [29] V. Vigon. Simplifiez vos Lévy en titillant la factorisation de Wiener–Hopf. Thèse de doctorat de l’INSA de Rouen, 2002.
- [30] T. Watanabe. Convolution equivalence and distributions of random sums. Probab. Theory Related Fields 142 (3–4) (2008) 367–397. Zbl1146.60014MR2438696
- [31] S. J. Wolfe. On a continuous analogue of the stochastic difference equation ${X}_{n}=\rho {X}_{n-1}+{B}_{n}$. Stochastic Process. Appl. 12 (3) (1982) 301–312. Zbl0482.60062MR656279

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.