Sinaıˇ's condition for real valued Lévy processes
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 3, page 299-319
- ISSN: 0246-0203
Access Full Article
topHow to cite
topRivero, Víctor. "Sinaıˇ's condition for real valued Lévy processes." Annales de l'I.H.P. Probabilités et statistiques 43.3 (2007): 299-319. <http://eudml.org/doc/77935>.
@article{Rivero2007,
author = {Rivero, Víctor},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy processes; fluctuation theory; regular variation; long tailed Lévy measures},
language = {eng},
number = {3},
pages = {299-319},
publisher = {Elsevier},
title = {Sinaıˇ's condition for real valued Lévy processes},
url = {http://eudml.org/doc/77935},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Rivero, Víctor
TI - Sinaıˇ's condition for real valued Lévy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 3
SP - 299
EP - 319
LA - eng
KW - Lévy processes; fluctuation theory; regular variation; long tailed Lévy measures
UR - http://eudml.org/doc/77935
ER -
References
top- [1] S. Asmussen, V. Kalashnikov, D. Konstantinides, C. Klüppelberg, G. Tsitsiashvili, A local limit theorem for random walk maxima with heavy tails, Statist. Probab. Lett.56 (4) (2002) 399-404. Zbl0997.60047MR1898718
- [2] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
- [3] J. Bertoin, R.A. Doney, Cramér's estimate for Lévy processes, Statist. Probab. Lett.21 (5) (1994) 363-365. Zbl0809.60085MR1325211
- [4] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. Zbl0667.26003MR1015093
- [5] Y.S. Chow, On moments of ladder height variables, Adv. Appl. Math.7 (1) (1986) 46-54. Zbl0598.60079MR834219
- [6] F. De Weert, Attraction to stable distributions for Lévy processes at zero, Technical report, University of Manchester, 2003.
- [7] R. Doney, Fluctuation theory for Lévy processes, in: Lévy Processes, Birkhäuser Boston, Boston, MA, 2001, pp. 57-66. Zbl0982.60048MR1833692
- [8] R.A. Doney, R.A. Maller, Stability of the overshoot for Lévy processes, Ann. Probab.30 (1) (2002) 188-212. Zbl1016.60052MR1894105
- [9] E.B. Dynkin, Some limit theorems for sums of independent random quantities with infinite mathematical expectations, Izv. Akad. Nauk SSSR Ser. Mat.19 (1955) 247-266. Zbl0068.12402MR76214
- [10] K.B. Erickson, The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc.185 (1973) 371-381, (1974). Zbl0304.60016MR336806
- [11] B. Fristedt, Sample functions of stochastic processes with stationary, independent increments, in: Advances in Probability and Related Topics, vol. 3, Dekker, New York, 1974, pp. 241-396. Zbl0309.60047MR400406
- [12] B.E. Fristedt, W.E. Pruitt, Lower functions for increasing random walks and subordinators, Z. Wahrsch. Verw. Gebiete18 (1971) 167-182. Zbl0197.44204MR292163
- [13] J.L. Geluk, L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tract, vol. 40, Stichting Mathematisch Centrum voor Wiskunde en Informatica, Amsterdam, 1987. Zbl0624.26003MR906871
- [14] I˘.Ī. Gīhman, A.V. Skorohod, The Theory of Stochastic Processes. II, Die Grundlehren der Mathematischen Wissenschaften, vol. 218, Springer-Verlag, New York, 1975, Translated from the Russian by Samuel Kotz. Zbl0305.60027MR375463
- [15] P. Greenwood, E. Omey, J.L. Teugels, Harmonic renewal measures, Z. Wahrsch. Verw. Gebiete59 (3) (1982) 391-409. Zbl0465.60079MR721635
- [16] R. Grübel, Tail behaviour of ladder-height distributions in random walks, J. Appl. Probab.22 (3) (1985) 705-709. Zbl0574.60075MR799293
- [17] H. Kesten, The limit points of a normalized random walk, Ann. Math. Statist.41 (1970) 1173-1205. Zbl0233.60062MR266315
- [18] C. Klüppelberg, Subexponential distributions and integrated tails, J. Appl. Probab.25 (1) (1988) 132-141. Zbl0651.60020MR929511
- [19] C. Klüppelberg, A.E. Kyprianou, R.A. Maller, Ruin probabilities and overshoots for general Lévy insurance risk processes, Ann. Appl. Probab.14 (4) (2004) 1766-1801. Zbl1066.60049MR2099651
- [20] B.A. Rogozin, Distribution of the first ladder moment and height, and fluctuations of a random walk, Teor. Verojatnost. i Primenen.16 (1971) 539-613. Zbl0269.60053MR290473
- [21] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Zbl0973.60001MR1739520
- [22] N. Veraverbeke, Asymptotic behaviour of Wiener–Hopf factors of a random walk, Stochastic Processes Appl.5 (1) (1977) 27-37. Zbl0353.60073
- [23] V. Vigon, Simplifiez vos Lévy en titillant la factorisation de Wiener–Hopf, PhD thesis, Université Louis Pasteur, 2002.
- [24] V. Vigon, Votre Lévy rampe-t-il ?, J. London Math. Soc. (2)65 (1) (2002) 243-256. Zbl1016.60054MR1875147
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.