Sinaıˇ's condition for real valued Lévy processes

Víctor Rivero

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 3, page 299-319
  • ISSN: 0246-0203

How to cite

top

Rivero, Víctor. "Sinaıˇ's condition for real valued Lévy processes." Annales de l'I.H.P. Probabilités et statistiques 43.3 (2007): 299-319. <http://eudml.org/doc/77935>.

@article{Rivero2007,
author = {Rivero, Víctor},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy processes; fluctuation theory; regular variation; long tailed Lévy measures},
language = {eng},
number = {3},
pages = {299-319},
publisher = {Elsevier},
title = {Sinaıˇ's condition for real valued Lévy processes},
url = {http://eudml.org/doc/77935},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Rivero, Víctor
TI - Sinaıˇ's condition for real valued Lévy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 3
SP - 299
EP - 319
LA - eng
KW - Lévy processes; fluctuation theory; regular variation; long tailed Lévy measures
UR - http://eudml.org/doc/77935
ER -

References

top
  1. [1] S. Asmussen, V. Kalashnikov, D. Konstantinides, C. Klüppelberg, G. Tsitsiashvili, A local limit theorem for random walk maxima with heavy tails, Statist. Probab. Lett.56 (4) (2002) 399-404. Zbl0997.60047MR1898718
  2. [2] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
  3. [3] J. Bertoin, R.A. Doney, Cramér's estimate for Lévy processes, Statist. Probab. Lett.21 (5) (1994) 363-365. Zbl0809.60085MR1325211
  4. [4] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. Zbl0667.26003MR1015093
  5. [5] Y.S. Chow, On moments of ladder height variables, Adv. Appl. Math.7 (1) (1986) 46-54. Zbl0598.60079MR834219
  6. [6] F. De Weert, Attraction to stable distributions for Lévy processes at zero, Technical report, University of Manchester, 2003. 
  7. [7] R. Doney, Fluctuation theory for Lévy processes, in: Lévy Processes, Birkhäuser Boston, Boston, MA, 2001, pp. 57-66. Zbl0982.60048MR1833692
  8. [8] R.A. Doney, R.A. Maller, Stability of the overshoot for Lévy processes, Ann. Probab.30 (1) (2002) 188-212. Zbl1016.60052MR1894105
  9. [9] E.B. Dynkin, Some limit theorems for sums of independent random quantities with infinite mathematical expectations, Izv. Akad. Nauk SSSR Ser. Mat.19 (1955) 247-266. Zbl0068.12402MR76214
  10. [10] K.B. Erickson, The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc.185 (1973) 371-381, (1974). Zbl0304.60016MR336806
  11. [11] B. Fristedt, Sample functions of stochastic processes with stationary, independent increments, in: Advances in Probability and Related Topics, vol. 3, Dekker, New York, 1974, pp. 241-396. Zbl0309.60047MR400406
  12. [12] B.E. Fristedt, W.E. Pruitt, Lower functions for increasing random walks and subordinators, Z. Wahrsch. Verw. Gebiete18 (1971) 167-182. Zbl0197.44204MR292163
  13. [13] J.L. Geluk, L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tract, vol. 40, Stichting Mathematisch Centrum voor Wiskunde en Informatica, Amsterdam, 1987. Zbl0624.26003MR906871
  14. [14] I˘.Ī. Gīhman, A.V. Skorohod, The Theory of Stochastic Processes. II, Die Grundlehren der Mathematischen Wissenschaften, vol. 218, Springer-Verlag, New York, 1975, Translated from the Russian by Samuel Kotz. Zbl0305.60027MR375463
  15. [15] P. Greenwood, E. Omey, J.L. Teugels, Harmonic renewal measures, Z. Wahrsch. Verw. Gebiete59 (3) (1982) 391-409. Zbl0465.60079MR721635
  16. [16] R. Grübel, Tail behaviour of ladder-height distributions in random walks, J. Appl. Probab.22 (3) (1985) 705-709. Zbl0574.60075MR799293
  17. [17] H. Kesten, The limit points of a normalized random walk, Ann. Math. Statist.41 (1970) 1173-1205. Zbl0233.60062MR266315
  18. [18] C. Klüppelberg, Subexponential distributions and integrated tails, J. Appl. Probab.25 (1) (1988) 132-141. Zbl0651.60020MR929511
  19. [19] C. Klüppelberg, A.E. Kyprianou, R.A. Maller, Ruin probabilities and overshoots for general Lévy insurance risk processes, Ann. Appl. Probab.14 (4) (2004) 1766-1801. Zbl1066.60049MR2099651
  20. [20] B.A. Rogozin, Distribution of the first ladder moment and height, and fluctuations of a random walk, Teor. Verojatnost. i Primenen.16 (1971) 539-613. Zbl0269.60053MR290473
  21. [21] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Zbl0973.60001MR1739520
  22. [22] N. Veraverbeke, Asymptotic behaviour of Wiener–Hopf factors of a random walk, Stochastic Processes Appl.5 (1) (1977) 27-37. Zbl0353.60073
  23. [23] V. Vigon, Simplifiez vos Lévy en titillant la factorisation de Wiener–Hopf, PhD thesis, Université Louis Pasteur, 2002. 
  24. [24] V. Vigon, Votre Lévy rampe-t-il ?, J. London Math. Soc. (2)65 (1) (2002) 243-256. Zbl1016.60054MR1875147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.