Comparison between two types of large sample covariance matrices
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 655-677
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topPan, Guangming. "Comparison between two types of large sample covariance matrices." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 655-677. <http://eudml.org/doc/271990>.
@article{Pan2014,
abstract = {Let $\lbrace X_\{ij\}\rbrace $, $i,j=\cdots $, be a double array of independent and identically distributed (i.i.d.) real random variables with $EX_\{11\}=\mu $, $E|X_\{11\}-\mu |^\{2\}=1$ and $E|X_\{11\}|^\{4\}<\infty $. Consider sample covariance matrices (with/without empirical centering) $\mathcal \{S\}=\frac\{1\}\{n\}\sum _\{j=1\}^\{n\}(\mathbf \{s\}_\{j\}-\bar\{\mathbf \{s\}\})(\mathbf \{s\}_\{j\}-\bar\{\mathbf \{s\}\})^\{T\}$ and $\mathbf \{S\} =\frac\{1\}\{n\}\sum _\{j=1\}^\{n\}\mathbf \{s\}_\{j\}\mathbf \{s\}_\{j\}^\{T\}$, where $\bar\{\mathbf \{s\}\}=\frac\{1\}\{n\}\sum _\{j=1\}^\{n\}\mathbf \{s\}_\{j\}$ and $\mathbf \{s\}_\{j\}=\mathbf \{T\} _\{n\}^\{1/2\}(X_\{1j\},\ldots ,X_\{pj\})^\{T\}$ with $(\mathbf \{T\} _\{n\}^\{1/2\})^\{2\}=\mathbf \{T\} _\{n\}$, non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of $\mathcal \{S\}$ and $\mathbf \{S\} $ are different as $n\rightarrow \infty $ with $p/n$ approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.},
author = {Pan, Guangming},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {central limit theorems; eigenvectors and eigenvalues; sample covariance matrix; Stieltjes transform; strong convergence; eigenvectors; eigenvalues; eigenvalue statistics},
language = {eng},
number = {2},
pages = {655-677},
publisher = {Gauthier-Villars},
title = {Comparison between two types of large sample covariance matrices},
url = {http://eudml.org/doc/271990},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Pan, Guangming
TI - Comparison between two types of large sample covariance matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 655
EP - 677
AB - Let $\lbrace X_{ij}\rbrace $, $i,j=\cdots $, be a double array of independent and identically distributed (i.i.d.) real random variables with $EX_{11}=\mu $, $E|X_{11}-\mu |^{2}=1$ and $E|X_{11}|^{4}<\infty $. Consider sample covariance matrices (with/without empirical centering) $\mathcal {S}=\frac{1}{n}\sum _{j=1}^{n}(\mathbf {s}_{j}-\bar{\mathbf {s}})(\mathbf {s}_{j}-\bar{\mathbf {s}})^{T}$ and $\mathbf {S} =\frac{1}{n}\sum _{j=1}^{n}\mathbf {s}_{j}\mathbf {s}_{j}^{T}$, where $\bar{\mathbf {s}}=\frac{1}{n}\sum _{j=1}^{n}\mathbf {s}_{j}$ and $\mathbf {s}_{j}=\mathbf {T} _{n}^{1/2}(X_{1j},\ldots ,X_{pj})^{T}$ with $(\mathbf {T} _{n}^{1/2})^{2}=\mathbf {T} _{n}$, non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of $\mathcal {S}$ and $\mathbf {S} $ are different as $n\rightarrow \infty $ with $p/n$ approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.
LA - eng
KW - central limit theorems; eigenvectors and eigenvalues; sample covariance matrix; Stieltjes transform; strong convergence; eigenvectors; eigenvalues; eigenvalue statistics
UR - http://eudml.org/doc/271990
ER -
References
top- [1] T. W. Anderson. An Introduction to Multivariate Statistical Analysis, 2nd edition. Wiley, New York, 1984. Zbl0083.14601MR771294
- [2] Z. D. Bai and J. W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution of large dimensional random matrices. Ann. Probab.26 (1998) 316–345. Zbl0937.60017MR1617051
- [3] Z. D. Bai and J. W. Silverstein. CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Probab.32 (2004) 553–605. Zbl1063.60022MR2040792
- [4] Z. D. Bai, B. Q. Miao and G. M. Pan. On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab.35 (2007) 1532–1572. Zbl1162.15012MR2330979
- [5] Z. D. Bai and J. W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2010. Zbl1301.60002MR2567175
- [6] Z. D. Bai and G. M. Pan. Limiting behavior of eigenvectors of large Wigner matrices. J. Stat. Phys.146 (2012) 519–549. Zbl1235.82035MR2880031
- [7] F. Benaych-Georges. Eigenvectors of Wigner matrices: Universality of global fluctuations. Available at http://arxiv.org/abs/1104.1219. Zbl1266.15046
- [8] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. Zbl0944.60003MR233396
- [9] C. Donati-Martin and A. Rouault. Truncations of Haar unitary matrices, traces and bivariate Brownian bridge. RMTA 1(1) (2012) 1150007. Zbl1247.15031MR2930384
- [10] I. Johnstone. On the distribution of the largest eigenvalue in principal component analysis. Ann. Statist.29 (2001) 295–327. Zbl1016.62078MR1863961
- [11] T. F. Jiang. The limiting distriubtions of eigenvalues of sample correlation matrices. Sankhya66 (2004) 35–48. Zbl1193.62018MR2082906
- [12] D. Jonsson. Some limit theorems of the eigenvalues of sample convariance matrix. J. Multivariate Anal.12 (1982) 1–38. Zbl0491.62021MR650926
- [13] O. Ledoit and S. Peche. Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Related Fields151 (2011) 233–264. Zbl1229.60009MR2834718
- [14] V. A. Marčenko and L. A. Pastur. Distribution for some sets of random matrices. Math. USSR-Sb. 1 (1967) 457–483. Zbl0162.22501
- [15] G. M. Pan and W. Zhou. Central limit theorem for Hotelling’s statistic under large dimension. Ann. Appl. Probab.21 (2011) 1860–1910. Zbl1250.62030MR2884053
- [16] G. M. Pan and W. Zhou. Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab.18 (2008) 1232–1270. Zbl1153.15315MR2418244
- [17] G. M. Pan, Q. M. Shao and W. Zhou. Universality of sample covariance matrices: CLT of the smoothed empirical spectral distribution. Preprint.
- [18] J. W. Silverstein. On the eigenvectors of large dimensional sample covariance matrices. J. Multivariate Anal.30 (1989) 1–16. Zbl0678.60011MR1003705
- [19] J. W. Silverstein. Strong convergence of the limiting distribution of the eigenvalues of large dimensional random matrices. J. Multivariate Anal.55 (1995) 331–339. Zbl0851.62015MR1370408
- [20] J. W. Silverstein. Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann. Probab.18 (1990) 1174–1194. Zbl0708.62051MR1062064
- [21] T. Tao and V. Vu. Random matrices: Universal properties of eigenvectors. Available at arXiv:1103.2801v2. Zbl1248.15031MR2930379
- [22] H. Xiao and W. Zhou. On the limit of the smallest eigenvalue of some sample covariance matrix. J. Theoret. Probab.23 (2010) 1–20. Zbl1185.62098MR2591901
- [23] Y. Q. Yin, Z. D. Bai and P. R. Krishanaiah. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix. Probab. Theory Related Fields78 (1988) 509–521. Zbl0627.62022MR950344
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.