Comparison between two types of large sample covariance matrices

Guangming Pan

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 2, page 655-677
  • ISSN: 0246-0203

Abstract

top
Let { X i j } , i , j = , be a double array of independent and identically distributed (i.i.d.) real random variables with E X 11 = μ , E | X 11 - μ | 2 = 1 and E | X 11 | 4 l t ; . Consider sample covariance matrices (with/without empirical centering) 𝒮 = 1 n j = 1 n ( 𝐬 j - 𝐬 ¯ ) ( 𝐬 j - 𝐬 ¯ ) T and 𝐒 = 1 n j = 1 n 𝐬 j 𝐬 j T , where 𝐬 ¯ = 1 n j = 1 n 𝐬 j and 𝐬 j = 𝐓 n 1 / 2 ( X 1 j , ... , X p j ) T with ( 𝐓 n 1 / 2 ) 2 = 𝐓 n , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of 𝒮 and 𝐒 are different as n with p / n approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.

How to cite

top

Pan, Guangming. "Comparison between two types of large sample covariance matrices." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 655-677. <http://eudml.org/doc/271990>.

@article{Pan2014,
abstract = {Let $\lbrace X_\{ij\}\rbrace $, $i,j=\cdots $, be a double array of independent and identically distributed (i.i.d.) real random variables with $EX_\{11\}=\mu $, $E|X_\{11\}-\mu |^\{2\}=1$ and $E|X_\{11\}|^\{4\}&lt;\infty $. Consider sample covariance matrices (with/without empirical centering) $\mathcal \{S\}=\frac\{1\}\{n\}\sum _\{j=1\}^\{n\}(\mathbf \{s\}_\{j\}-\bar\{\mathbf \{s\}\})(\mathbf \{s\}_\{j\}-\bar\{\mathbf \{s\}\})^\{T\}$ and $\mathbf \{S\} =\frac\{1\}\{n\}\sum _\{j=1\}^\{n\}\mathbf \{s\}_\{j\}\mathbf \{s\}_\{j\}^\{T\}$, where $\bar\{\mathbf \{s\}\}=\frac\{1\}\{n\}\sum _\{j=1\}^\{n\}\mathbf \{s\}_\{j\}$ and $\mathbf \{s\}_\{j\}=\mathbf \{T\} _\{n\}^\{1/2\}(X_\{1j\},\ldots ,X_\{pj\})^\{T\}$ with $(\mathbf \{T\} _\{n\}^\{1/2\})^\{2\}=\mathbf \{T\} _\{n\}$, non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of $\mathcal \{S\}$ and $\mathbf \{S\} $ are different as $n\rightarrow \infty $ with $p/n$ approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.},
author = {Pan, Guangming},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {central limit theorems; eigenvectors and eigenvalues; sample covariance matrix; Stieltjes transform; strong convergence; eigenvectors; eigenvalues; eigenvalue statistics},
language = {eng},
number = {2},
pages = {655-677},
publisher = {Gauthier-Villars},
title = {Comparison between two types of large sample covariance matrices},
url = {http://eudml.org/doc/271990},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Pan, Guangming
TI - Comparison between two types of large sample covariance matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 655
EP - 677
AB - Let $\lbrace X_{ij}\rbrace $, $i,j=\cdots $, be a double array of independent and identically distributed (i.i.d.) real random variables with $EX_{11}=\mu $, $E|X_{11}-\mu |^{2}=1$ and $E|X_{11}|^{4}&lt;\infty $. Consider sample covariance matrices (with/without empirical centering) $\mathcal {S}=\frac{1}{n}\sum _{j=1}^{n}(\mathbf {s}_{j}-\bar{\mathbf {s}})(\mathbf {s}_{j}-\bar{\mathbf {s}})^{T}$ and $\mathbf {S} =\frac{1}{n}\sum _{j=1}^{n}\mathbf {s}_{j}\mathbf {s}_{j}^{T}$, where $\bar{\mathbf {s}}=\frac{1}{n}\sum _{j=1}^{n}\mathbf {s}_{j}$ and $\mathbf {s}_{j}=\mathbf {T} _{n}^{1/2}(X_{1j},\ldots ,X_{pj})^{T}$ with $(\mathbf {T} _{n}^{1/2})^{2}=\mathbf {T} _{n}$, non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of $\mathcal {S}$ and $\mathbf {S} $ are different as $n\rightarrow \infty $ with $p/n$ approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.
LA - eng
KW - central limit theorems; eigenvectors and eigenvalues; sample covariance matrix; Stieltjes transform; strong convergence; eigenvectors; eigenvalues; eigenvalue statistics
UR - http://eudml.org/doc/271990
ER -

References

top
  1. [1] T. W. Anderson. An Introduction to Multivariate Statistical Analysis, 2nd edition. Wiley, New York, 1984. Zbl0083.14601MR771294
  2. [2] Z. D. Bai and J. W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution of large dimensional random matrices. Ann. Probab.26 (1998) 316–345. Zbl0937.60017MR1617051
  3. [3] Z. D. Bai and J. W. Silverstein. CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Probab.32 (2004) 553–605. Zbl1063.60022MR2040792
  4. [4] Z. D. Bai, B. Q. Miao and G. M. Pan. On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab.35 (2007) 1532–1572. Zbl1162.15012MR2330979
  5. [5] Z. D. Bai and J. W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2010. Zbl1301.60002MR2567175
  6. [6] Z. D. Bai and G. M. Pan. Limiting behavior of eigenvectors of large Wigner matrices. J. Stat. Phys.146 (2012) 519–549. Zbl1235.82035MR2880031
  7. [7] F. Benaych-Georges. Eigenvectors of Wigner matrices: Universality of global fluctuations. Available at http://arxiv.org/abs/1104.1219. Zbl1266.15046
  8. [8] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. Zbl0944.60003MR233396
  9. [9] C. Donati-Martin and A. Rouault. Truncations of Haar unitary matrices, traces and bivariate Brownian bridge. RMTA 1(1) (2012) 1150007. Zbl1247.15031MR2930384
  10. [10] I. Johnstone. On the distribution of the largest eigenvalue in principal component analysis. Ann. Statist.29 (2001) 295–327. Zbl1016.62078MR1863961
  11. [11] T. F. Jiang. The limiting distriubtions of eigenvalues of sample correlation matrices. Sankhya66 (2004) 35–48. Zbl1193.62018MR2082906
  12. [12] D. Jonsson. Some limit theorems of the eigenvalues of sample convariance matrix. J. Multivariate Anal.12 (1982) 1–38. Zbl0491.62021MR650926
  13. [13] O. Ledoit and S. Peche. Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Related Fields151 (2011) 233–264. Zbl1229.60009MR2834718
  14. [14] V. A. Marčenko and L. A. Pastur. Distribution for some sets of random matrices. Math. USSR-Sb. 1 (1967) 457–483. Zbl0162.22501
  15. [15] G. M. Pan and W. Zhou. Central limit theorem for Hotelling’s T 2 statistic under large dimension. Ann. Appl. Probab.21 (2011) 1860–1910. Zbl1250.62030MR2884053
  16. [16] G. M. Pan and W. Zhou. Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab.18 (2008) 1232–1270. Zbl1153.15315MR2418244
  17. [17] G. M. Pan, Q. M. Shao and W. Zhou. Universality of sample covariance matrices: CLT of the smoothed empirical spectral distribution. Preprint. 
  18. [18] J. W. Silverstein. On the eigenvectors of large dimensional sample covariance matrices. J. Multivariate Anal.30 (1989) 1–16. Zbl0678.60011MR1003705
  19. [19] J. W. Silverstein. Strong convergence of the limiting distribution of the eigenvalues of large dimensional random matrices. J. Multivariate Anal.55 (1995) 331–339. Zbl0851.62015MR1370408
  20. [20] J. W. Silverstein. Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann. Probab.18 (1990) 1174–1194. Zbl0708.62051MR1062064
  21. [21] T. Tao and V. Vu. Random matrices: Universal properties of eigenvectors. Available at arXiv:1103.2801v2. Zbl1248.15031MR2930379
  22. [22] H. Xiao and W. Zhou. On the limit of the smallest eigenvalue of some sample covariance matrix. J. Theoret. Probab.23 (2010) 1–20. Zbl1185.62098MR2591901
  23. [23] Y. Q. Yin, Z. D. Bai and P. R. Krishanaiah. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix. Probab. Theory Related Fields78 (1988) 509–521. Zbl0627.62022MR950344

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.