Euler hydrodynamics for attractive particle systems in random environment
C. Bahadoran; H. Guiol; K. Ravishankar; E. Saada
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 403-424
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBahadoran, C., et al. "Euler hydrodynamics for attractive particle systems in random environment." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 403-424. <http://eudml.org/doc/271999>.
@article{Bahadoran2014,
abstract = {We prove quenched hydrodynamic limit under hyperbolic time scaling for bounded attractive particle systems on $\mathbb \{Z\}$ in random ergodic environment. Our result is a strong law of large numbers, that we illustrate with various examples.},
author = {Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {hydrodynamic limit; attractive particle system; scalar conservation law; entropy solution; random environment; quenched disorder; generalized misanthropes and $k$-step models; hydrodynamic limit; attractive particle system; scalar conservation law; entropy solution; random environment; quenched disorder; generalized misanthropes; -step models},
language = {eng},
number = {2},
pages = {403-424},
publisher = {Gauthier-Villars},
title = {Euler hydrodynamics for attractive particle systems in random environment},
url = {http://eudml.org/doc/271999},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Bahadoran, C.
AU - Guiol, H.
AU - Ravishankar, K.
AU - Saada, E.
TI - Euler hydrodynamics for attractive particle systems in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 403
EP - 424
AB - We prove quenched hydrodynamic limit under hyperbolic time scaling for bounded attractive particle systems on $\mathbb {Z}$ in random ergodic environment. Our result is a strong law of large numbers, that we illustrate with various examples.
LA - eng
KW - hydrodynamic limit; attractive particle system; scalar conservation law; entropy solution; random environment; quenched disorder; generalized misanthropes and $k$-step models; hydrodynamic limit; attractive particle system; scalar conservation law; entropy solution; random environment; quenched disorder; generalized misanthropes; -step models
UR - http://eudml.org/doc/271999
ER -
References
top- [1] E. D. Andjel. Invariant measures for the zero range process. Ann. Probab.10 (1982) 525–547. Zbl0492.60096MR659526
- [2] E. D. Andjel and M. E. Vares. Hydrodynamic equations for attractive particle systems on . J. Stat. Phys. 47 (1987) 265–288. Correction to: “Hydrodynamic equations for attractive particle systems on ”. J. Stat. Phys. 113 (2003) 379–380. Zbl0685.58043MR892931
- [3] C. Bahadoran, H. Guiol, K. Ravishankar and E. Saada. A constructive approach to Euler hydrodynamics for attractive particle systems. Application to -step exclusion. Stochastic Process. Appl. 99 (2002) 1–30. Zbl1058.60084MR1894249
- [4] C. Bahadoran, H. Guiol, K. Ravishankar and E. Saada. Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab.34 (2006) 1339–1369. Zbl1101.60075MR2257649
- [5] C. Bahadoran, H. Guiol, K. Ravishankar and E. Saada. Strong hydrodynamic limit for attractive particle systems on . Electron. J. Probab.15 (2010) 1–43. Zbl1193.60113MR2578381
- [6] I. Benjamini, P. A. Ferrari and C. Landim. Asymmetric processes with random rates. Stoch. Process. Appl.61 (1996) 181–204. Zbl0849.60093MR1386172
- [7] M. Bramson and T. Mountford. Stationary blocking measures for one-dimensional nonzero mean exclusion processes. Ann. Probab.30 (2002) 1082–1130. Zbl1042.60062MR1920102
- [8] C. Cocozza-Thivent. Processus des misanthropes. Z. Wahrsch. Verw. Gebiete70 (1985) 509–523. Zbl0554.60097MR807334
- [9] P. Dai Pra, P. Y. Louis and I. Minelli. Realizable monotonicity for continuous-time Markov processes. Stochastic Process. Appl.120 (2010) 959–982. Zbl1200.60064MR2610334
- [10] M. R. Evans. Bose–Einstein condensation in disordered exclusion models and relation to traffic flow. Europhys. Lett. 36 (1996) 13–18. DOI:10.1209/epl/i1996-00180-y.
- [11] A. Faggionato. Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields13 (2007) 519–542. Zbl1144.60058MR2357386
- [12] A. Faggionato and F. Martinelli. Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields127 (2003) 535–608. Zbl1052.60083MR2021195
- [13] J. A. Fill and M. Machida. Stochastic monotonicity and realizable monotonicity. Ann. Probab.29 (2001) 938–978. Zbl1015.60010MR1849183
- [14] J. Fritz. Hydrodynamics in a symmetric random medium. Comm. Math. Phys.125 (1989) 13–25. Zbl0682.76001MR1017736
- [15] T. Gobron and E. Saada. Couplings, attractiveness and hydrodynamics for conservative particle systems. Ann. Inst. H. Poincaré Probab. Statist.46 (2010) 1132–1177. Zbl1252.60093MR2744889
- [16] P. Gonçalves and M. Jara. Scaling limits for gradient systems in random environment. J. Stat. Phys.131 (2008) 691–716. Zbl1144.82043MR2398949
- [17] H. Guiol. Some properties of -step exclusion processes. J. Stat. Phys.94 (1999) 495–511. Zbl0953.60091MR1675362
- [18] M. Jara. Hydrodynamic limit of the exclusion process in inhomogeneous media. In Dynamics, Games and Science II 449–465. M. M. Peixoto, A. A. Pinto and D. A. Rand (Eds). Springer Proceedings in Mathematics 2. Springer, Heidelberg, 2011. Zbl06078295MR2883297
- [19] T. Kamae and U. Krengel. Stochastic partial ordering. Ann. Probab.6 (1978) 1044–1049. Zbl0392.60012MR512419
- [20] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. Zbl0927.60002MR1707314
- [21] A. Koukkous. Hydrodynamic behavior of symmetric zero-range processes with random rates. Stochastic Process. Appl.84 (1999) 297–312. Zbl0996.60108MR1719270
- [22] T. M. Liggett. Coupling the simple exclusion process. Ann. Probab.4 (1976) 339–356. Zbl0339.60091MR418291
- [23] T. M. Liggett. Interacting Particle Systems. Classics in Mathematics, Reprint of first edition. Springer, Berlin, 2005. Zbl1103.82016MR2108619
- [24] T. S. Mountford, K. Ravishankar and E. Saada. Macroscopic stability for nonfinite range kernels. Braz. J. Probab. Stat.24 (2010) 337–360. Zbl1195.82058MR2643570
- [25] K. Nagy. Symmetric random walk in random environment in one dimension. Period. Math. Hungar.45 (2002) 101–120. Zbl1064.60202MR1955197
- [26] J. Quastel. Bulk diffusion in a system with site disorder. Ann. Probab.34 (2006) 1990–2036. Zbl1104.60066MR2271489
- [27] F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on . Comm. Math. Phys.140 (1991) 417–448. Zbl0738.60098MR1130693
- [28] T. Seppäläinen. Existence of hydrodynamics for the totally asymmetric simple -exclusion process. Ann. Probab.27 (1999) 361–415. Zbl0947.60088MR1681094
- [29] T. Seppäläinen and J. Krug. Hydrodynamics and Platoon formation for a totally asymmetric exclusion model with particlewise disorder. J. Stat. Phys.95 (1999) 525–567. Zbl0964.82041MR1700871
- [30] D. Serre. Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge, 1999. Translated from the 1996 French original by I. N. Sneddon. Zbl0930.35001MR1707279
- [31] V. Strassen. The existence of probability measures with given marginals. Ann. Math. Statist.36 (1965) 423–439. Zbl0135.18701MR177430
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.