Central limit theorems for eigenvalues of deformations of Wigner matrices

M. Capitaine; C. Donati-Martin; D. Féral

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 1, page 107-133
  • ISSN: 0246-0203

Abstract

top
In this paper, we study the fluctuations of the extreme eigenvalues of a spiked finite rank deformation of a Hermitian (resp. symmetric) Wigner matrix when these eigenvalues separate from the bulk. We exhibit quite general situations that will give rise to universality or non-universality of the fluctuations, according to the delocalization or localization of the eigenvectors of the perturbation. Dealing with the particular case of a spike with multiplicity one, we also establish a necessary and sufficient condition on the associated normalized eigenvector so that the fluctuations of the corresponding eigenvalue of the deformed model are universal.

How to cite

top

Capitaine, M., Donati-Martin, C., and Féral, D.. "Central limit theorems for eigenvalues of deformations of Wigner matrices." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 107-133. <http://eudml.org/doc/272000>.

@article{Capitaine2012,
abstract = {In this paper, we study the fluctuations of the extreme eigenvalues of a spiked finite rank deformation of a Hermitian (resp. symmetric) Wigner matrix when these eigenvalues separate from the bulk. We exhibit quite general situations that will give rise to universality or non-universality of the fluctuations, according to the delocalization or localization of the eigenvectors of the perturbation. Dealing with the particular case of a spike with multiplicity one, we also establish a necessary and sufficient condition on the associated normalized eigenvector so that the fluctuations of the corresponding eigenvalue of the deformed model are universal.},
author = {Capitaine, M., Donati-Martin, C., Féral, D.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrices; deformed Wigner matrices; extremal eigenvalues; fluctuations; localized eigenvectors; universality},
language = {eng},
number = {1},
pages = {107-133},
publisher = {Gauthier-Villars},
title = {Central limit theorems for eigenvalues of deformations of Wigner matrices},
url = {http://eudml.org/doc/272000},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Capitaine, M.
AU - Donati-Martin, C.
AU - Féral, D.
TI - Central limit theorems for eigenvalues of deformations of Wigner matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 107
EP - 133
AB - In this paper, we study the fluctuations of the extreme eigenvalues of a spiked finite rank deformation of a Hermitian (resp. symmetric) Wigner matrix when these eigenvalues separate from the bulk. We exhibit quite general situations that will give rise to universality or non-universality of the fluctuations, according to the delocalization or localization of the eigenvectors of the perturbation. Dealing with the particular case of a spike with multiplicity one, we also establish a necessary and sufficient condition on the associated normalized eigenvector so that the fluctuations of the corresponding eigenvalue of the deformed model are universal.
LA - eng
KW - random matrices; deformed Wigner matrices; extremal eigenvalues; fluctuations; localized eigenvectors; universality
UR - http://eudml.org/doc/272000
ER -

References

top
  1. [1] Z. D. Bai. Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica9 (1999) 611–677. Zbl0949.60077MR1711663
  2. [2] Z. D. Bai and J. W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab.26 (1998) 316–345. Zbl0937.60017MR1617051
  3. [3] Z. D. Bai and J. W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer Ser. Statist. Springer, New York, 2010. Zbl1301.60002MR2567175
  4. [4] Z. D. Bai and J. F. Yao. On the convergence of the spectral empirical process of Wigner matrices. Bernoulli11 (2005) 1059–1092. Zbl1101.60012MR2189081
  5. [5] Z. D. Bai and J. F. Yao. Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. H. Poincaré Probab. Statist.44 (2008) 447–474. Zbl1274.62129MR2451053
  6. [6] J. Baik, G. Ben Arous and S. Péché. Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab.33 (2005) 1643–1697. Zbl1086.15022MR2165575
  7. [7] G. Biroli, J. P. Bouchaud and M. Potters. On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. 78 (2007) Art 10001. Zbl1244.82029MR2371333
  8. [8] M. Capitaine, C. Donati-Martin and D. Féral. The largest eigenvalue of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. Ann. Probab.37 (2009) 1–47. Zbl1163.15026MR2489158
  9. [9] L. Erdös, H.-T. Yau and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. Preprint, 2010. Available at arXiv:1007.4652. Zbl1238.15017MR2871147
  10. [10] D. Féral and S. Péché. The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys.272 (2007) 185–228. Zbl1136.82016MR2291807
  11. [11] D. Féral and S. Péché. The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case. J. Math. Phys. 50 (2009) 073302. Zbl05840821MR2548630
  12. [12] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica1 (1981) 233–241. Zbl0494.15010
  13. [13] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs 77. Amer. Math. Soc., Providence, RI, 2000. Zbl0955.46037MR1746976
  14. [14] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Univ. Press, New York, 1991. Zbl0576.15001
  15. [15] S. Janson. Normal convergence by higher semi-invariants with applications to sums of dependent random variables and random graphs. Ann. Probab.16 (1988) 305–312. Zbl0639.60029MR920273
  16. [16] O. Khorunzhiy. High moments of large Wigner random matrices and asymptotic properties of the spectral norm. Preprint, 2009. Available at arXiv:0907.3743v5. Zbl1270.15025MR2899796
  17. [17] A. Onatski. The Tracy–Widom limit for the largest eigenvalues of singular complex Wishart matrices. Ann. Appl. Probab.18 (2008) 470–490. Zbl1141.60009MR2398763
  18. [18] D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica17 (2007) 1617–1641. Zbl1134.62029MR2399865
  19. [19] S. Péché. The largest eigenvalues of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields134 (2006) 127–174. Zbl1088.15025MR2221787
  20. [20] A. Ruzmaikina. Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries. Comm. Math. Phys.261 (2006) 277–296. Zbl1130.82313MR2191882
  21. [21] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys.207 (1999) 697–733. Zbl1062.82502MR1727234
  22. [22] T. Tao and V. Vu. Random matrices: Universality of the local eigenvalue statistics up to the edge. Comm. Math. Phys.298 (2010) 549–572. Zbl1202.15038MR2669449
  23. [23] C. A. Tracy and H. Widom. Level spacing distributions and the Airy kernel. Comm. Math. Phys.159 (1994) 151–174. Zbl0789.35152MR1257246

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.