On finite rank deformations of Wigner matrices

Alessandro Pizzo; David Renfrew; Alexander Soshnikov

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 1, page 64-94
  • ISSN: 0246-0203

Abstract

top
We study the distribution of the outliers in the spectrum of finite rank deformations of Wigner random matrices under the assumption that the absolute values of the off-diagonal matrix entries have uniformly bounded fifth moment and the absolute values of the diagonal entries have uniformly bounded third moment. Using our recent results on the fluctuation of resolvent entries (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, Unpublished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished manuscript) and ideas from (Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished manuscript), we extend the results by Capitaine, Donati-Martin, and Féral (Ann. Probab.37 (2009) 1–47; Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 107–133).

How to cite

top

Pizzo, Alessandro, Renfrew, David, and Soshnikov, Alexander. "On finite rank deformations of Wigner matrices." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 64-94. <http://eudml.org/doc/272017>.

@article{Pizzo2013,
abstract = {We study the distribution of the outliers in the spectrum of finite rank deformations of Wigner random matrices under the assumption that the absolute values of the off-diagonal matrix entries have uniformly bounded fifth moment and the absolute values of the diagonal entries have uniformly bounded third moment. Using our recent results on the fluctuation of resolvent entries (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, Unpublished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished manuscript) and ideas from (Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished manuscript), we extend the results by Capitaine, Donati-Martin, and Féral (Ann. Probab.37 (2009) 1–47; Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 107–133).},
author = {Pizzo, Alessandro, Renfrew, David, Soshnikov, Alexander},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrices; ouliers in the spectrum; finite rank deformations; outliers in the spectrum},
language = {eng},
number = {1},
pages = {64-94},
publisher = {Gauthier-Villars},
title = {On finite rank deformations of Wigner matrices},
url = {http://eudml.org/doc/272017},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Pizzo, Alessandro
AU - Renfrew, David
AU - Soshnikov, Alexander
TI - On finite rank deformations of Wigner matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 64
EP - 94
AB - We study the distribution of the outliers in the spectrum of finite rank deformations of Wigner random matrices under the assumption that the absolute values of the off-diagonal matrix entries have uniformly bounded fifth moment and the absolute values of the diagonal entries have uniformly bounded third moment. Using our recent results on the fluctuation of resolvent entries (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, Unpublished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished manuscript) and ideas from (Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished manuscript), we extend the results by Capitaine, Donati-Martin, and Féral (Ann. Probab.37 (2009) 1–47; Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 107–133).
LA - eng
KW - random matrices; ouliers in the spectrum; finite rank deformations; outliers in the spectrum
UR - http://eudml.org/doc/272017
ER -

References

top
  1. [1] G. W. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, New York, 2010. Zbl1184.15023MR2760897
  2. [2] Z. D. Bai. Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica9 (1999) 611–677. Zbl0949.60077MR1711663
  3. [3] Z. D. Bai and J. Yao. Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincaré Probab. Stat.44 (2008) 447–474. Zbl1274.62129MR2451053
  4. [4] Z. D. Bai and Y. Q. Yin. Necessary and sufficient conditions for the almost sure convergence of the largest eigenvalue of Wigner matrices. Ann. Probab.16 (1988) 1729–1741. Zbl0677.60038MR958213
  5. [5] J. Baik and J. W. Silverstein. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal.97 (2006) 1382–1408. Zbl1220.15011MR2279680
  6. [6] J. Baik, G. Ben Arous and S. Péché. Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab.33 (2005) 1643–1697. Zbl1086.15022MR2165575
  7. [7] G. Ben Arous and A. Guionnet. Wigner matrices. In Oxford Handbook on Random Matrix Theory. G. Akemann, J. Baik and P. Di Francesco (Eds). Oxford Univ. Press, New York, 2011. Zbl1236.15063MR2932641
  8. [8] F. Benaych-Georges and R. Rao. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Unpublished manuscript. Available at arXiv:0910.2120v3. Zbl1226.15023
  9. [9] F. Benaych-Georges, A. Guionnet and M. Maida. Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Unpublished manuscript. Available at arXiv:1009.0145. Zbl1245.60007MR2835249
  10. [10] F. Benaych-Georges, A. Guionnet and M. Maida. Large deviations of the extreme eigenvalues of random deformations of matrices. Unpublished manuscript. Available at arXiv:1009.0135v2. Zbl1261.15042MR3000560
  11. [11] M. Capitaine, C. Donati-Martin and D. Féral. The largest eigenvalue of finite rank deformation of large Wigner matrices: Convergence and non universality of the fluctuations. Ann. Probab.37 (2009) 1–47. Zbl1163.15026MR2489158
  12. [12] M. Capitaine, C. Donati-Martin and D. Féral. Central limit theorems for eigenvalues of deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 107–133. Zbl1237.60007MR2919200
  13. [13] M. Capitaine, C. Donati-MartinD. Féral and M. Février. Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices. Unpublished manuscript. Available at arXiv:1006.3684. Zbl1245.15037
  14. [14] X. Chen, H. Qi and P. Tseng. Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementary problems. SIAM J. Optim.13 (2003) 960–985. Zbl1076.90042MR2005912
  15. [15] E. B. Davies. The functional calculus. J. Lond. Math. Soc.52 (1995) 166–176. Zbl0858.47012MR1345723
  16. [16] R. Durrett. Probability. Theory and Examples, 4th edition. Cambridge Univ. Press, New York, 2010. Zbl1202.60001MR2722836
  17. [17] L. Erdös, H.-T. Yau and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. Unpublished manuscript. Available at arXiv:1007.4652. Zbl1238.15017MR2871147
  18. [18] D. Féral and S. Péché. The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys.272 (2007) 185–228. Zbl1136.82016MR2291807
  19. [19] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica1 (1981) 233–241. Zbl0494.15010
  20. [20] A. Guionnet and B. Zegarlinski. Lectures on logarithmic Sobolev inequalities. In Seminaire de Probabilités XXXVI. Lecture Notes in Math. 1801. Springer, Paris, 2003. Zbl1125.60111MR1971582
  21. [21] B. Helffer and J. Sjöstrand. Equation de Schrödinger avec champ magnetique et equation de Harper. In Schrödinger Operators 118–197. H. Holden and A. Jensen (Eds). Lecture Notes in Physics 345. Springer, Berlin, 1989. Zbl0699.35189MR1037319
  22. [22] K. Johansson. Universality for certain Hermitian Wigner matrices under weak moment conditions. Unpublished manuscript. Available at arXiv:0910.4467. Zbl1279.60014MR2919198
  23. [23] A. Khorunzhy, B. Khoruzhenko and L. Pastur. Asymptotic properties of large random matrices with independent entries. J. Math. Phys.37 (1996) 5033–5060. Zbl0866.15014MR1411619
  24. [24] M. Maida. Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles. Electron. J. Probab.12 (2007) 1131–1150. Zbl1127.60022MR2336602
  25. [25] S. O’Rourke, D. Renfrew and A. Soshnikov. On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries. Unpublished manuscript. Available at arXiv:1104.1663v3. Zbl1280.15021MR3090549
  26. [26] D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica17 (2007) 1617–1642. Zbl1134.62029MR2399865
  27. [27] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields134 (2006) 127–173. Zbl1088.15025MR2221787
  28. [28] A. Pizzo, D. Renfrew and A. Soshnikov. Fluctuations of matrix entries of regular functions of Wigner matrices. Unpublished manuscript. Available at arXiv:1103.1170v3. Zbl1246.60014MR2880032
  29. [29] M. Reed and B. Simon. Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York, 1978. Zbl0242.46001MR493421
  30. [30] M. Shcherbina. Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. Zh. Mat. Fiz. Anal. Geom. 7 (2011) 176–192, 197, 199. Zbl1228.15016MR2829615
  31. [31] M. Shcherbina. Letter from March 1, 2011. 
  32. [32] T. Tao. Outliers in the spectrum of iid matrices with bounded rank perturbations. Unpublished manuscript. Available at arXiv:1012.4818v2. Zbl1261.60009MR3010398

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.