Uniform mixing time for random walk on lamplighter graphs
Júlia Komjáthy; Jason Miller; Yuval Peres
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1140-1160
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topKomjáthy, Júlia, Miller, Jason, and Peres, Yuval. "Uniform mixing time for random walk on lamplighter graphs." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1140-1160. <http://eudml.org/doc/272003>.
@article{Komjáthy2014,
abstract = {Suppose that $\mathcal \{G\} $ is a finite, connected graph and $X$ is a lazy random walk on $\mathcal \{G\} $. The lamplighter chain $X^\{\diamond \}$ associated with $X$ is the random walk on the wreath product $\mathcal \{G\} ^\{\diamond \}=\mathbf \{Z\} _\{2\}\wr \mathcal \{G\} $, the graph whose vertices consist of pairs $(\underline\{f\} ,x)$ where $f$ is a labeling of the vertices of $\mathcal \{G\} $ by elements of $\mathbf \{Z\} _\{2\}=\lbrace 0,1\rbrace $ and $x$ is a vertex in $\mathcal \{G\} $. There is an edge between $(\underline\{f\} ,x)$ and $(\underline\{g\} ,y)$ in $\mathcal \{G\} ^\{\diamond \}$ if and only if $x$ is adjacent to $y$ in $\mathcal \{G\} $ and $f_\{z\}=g_\{z\}$ for all $z\ne x,y$. In each step, $X^\{\diamond \}$ moves from a configuration $(\underline\{f\} ,x)$ by updating $x$ to $y$ using the transition rule of $X$ and then sampling both $f_\{x\}$ and $f_\{y\}$ according to the uniform distribution on $\mathbf \{Z\} _\{2\}$; $f_\{z\}$ for $z\ne x,y$ remains unchanged. We give matching upper and lower bounds on the uniform mixing time of $X^\{\diamond \}$ provided $\mathcal \{G\} $ satisfies mild hypotheses. In particular, when $\mathcal \{G\} $ is the hypercube $\mathbf \{Z\} _\{2\}^\{d\}$, we show that the uniform mixing time of $X^\{\diamond \}$ is $\varTheta (d2^\{d\})$. More generally, we show that when $\mathcal \{G\} $ is a torus $\mathbf \{Z\} _\{n\}^\{d\}$ for $d\ge 3$, the uniform mixing time of $X^\{\diamond \}$ is $\varTheta (dn^\{d\})$ uniformly in $n$ and $d$. A critical ingredient for our proof is a concentration estimate for the local time of the random walk in a subset of vertices.},
author = {Komjáthy, Júlia, Miller, Jason, Peres, Yuval},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; uncovered set; lamplighter walk; mixing time; random walks; lamplighter graphs},
language = {eng},
number = {4},
pages = {1140-1160},
publisher = {Gauthier-Villars},
title = {Uniform mixing time for random walk on lamplighter graphs},
url = {http://eudml.org/doc/272003},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Komjáthy, Júlia
AU - Miller, Jason
AU - Peres, Yuval
TI - Uniform mixing time for random walk on lamplighter graphs
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1140
EP - 1160
AB - Suppose that $\mathcal {G} $ is a finite, connected graph and $X$ is a lazy random walk on $\mathcal {G} $. The lamplighter chain $X^{\diamond }$ associated with $X$ is the random walk on the wreath product $\mathcal {G} ^{\diamond }=\mathbf {Z} _{2}\wr \mathcal {G} $, the graph whose vertices consist of pairs $(\underline{f} ,x)$ where $f$ is a labeling of the vertices of $\mathcal {G} $ by elements of $\mathbf {Z} _{2}=\lbrace 0,1\rbrace $ and $x$ is a vertex in $\mathcal {G} $. There is an edge between $(\underline{f} ,x)$ and $(\underline{g} ,y)$ in $\mathcal {G} ^{\diamond }$ if and only if $x$ is adjacent to $y$ in $\mathcal {G} $ and $f_{z}=g_{z}$ for all $z\ne x,y$. In each step, $X^{\diamond }$ moves from a configuration $(\underline{f} ,x)$ by updating $x$ to $y$ using the transition rule of $X$ and then sampling both $f_{x}$ and $f_{y}$ according to the uniform distribution on $\mathbf {Z} _{2}$; $f_{z}$ for $z\ne x,y$ remains unchanged. We give matching upper and lower bounds on the uniform mixing time of $X^{\diamond }$ provided $\mathcal {G} $ satisfies mild hypotheses. In particular, when $\mathcal {G} $ is the hypercube $\mathbf {Z} _{2}^{d}$, we show that the uniform mixing time of $X^{\diamond }$ is $\varTheta (d2^{d})$. More generally, we show that when $\mathcal {G} $ is a torus $\mathbf {Z} _{n}^{d}$ for $d\ge 3$, the uniform mixing time of $X^{\diamond }$ is $\varTheta (dn^{d})$ uniformly in $n$ and $d$. A critical ingredient for our proof is a concentration estimate for the local time of the random walk in a subset of vertices.
LA - eng
KW - random walk; uncovered set; lamplighter walk; mixing time; random walks; lamplighter graphs
UR - http://eudml.org/doc/272003
ER -
References
top- [1] M. Brummelhuis and H. Hilhorst. Covering of a finite lattice by a random walk. Physica A176 (1991) 387–408. MR1130067
- [2] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Cover times for Brownian motion and random walks in two dimensions. Ann. Math.160 (2004) 433–464. Zbl1068.60018MR2123929
- [3] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Late points for random walk in two dimensions. Ann. Probab.34 (2006) 219–263. Zbl1100.60057MR2206347
- [4] P. Diaconis and L. Saloff-Coste. Comparison techniques for random walk on finite groups. Ann. Probab.21 (1993) 2131–2156. Zbl0790.60011MR1245303
- [5] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab.6 (1996) 695–750. Zbl0867.60043MR1410112
- [6] O. Häggström and J. Jonasson. Rates of convergence of lamplighter processes. Stochastic Process. Appl.67 (1997) 227–249. Zbl0889.60074MR1449833
- [7] G. F. Lawler and V. Limic. Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics 123. Cambridge Univ. Press, Cambridge, 2010. Zbl1210.60002MR2677157
- [8] C. A. Leon and F. Perron. Optimal Hoeffding bounds for discrete reversible Markov chains. Ann. Appl. Probab.14 (2004) 958–970. Zbl1056.60070MR2052909
- [9] D. Levin, Y. Peres and E. Wilmer. Markov Chains and Mixing Times. American Mathematical Society, Providence, RI, 2008. Zbl1160.60001MR2466937
- [10] J. Miller and Y. Peres. Uniformity of the uncovered set of random walk and cutoff for lamplighter chains. Ann. Probab.40 (2011) 535–577. Zbl1251.60058MR2952084
- [11] Y. Peres and D. Revelle. Mixing times for random walks on finite lamplighter groups. Electron. J. Probab.9 (2004) 825–845. Zbl1064.60095MR2110019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.