Stochastic differential equations with Sobolev drifts and driven by -stable processes
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 4, page 1057-1079
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topZhang, Xicheng. "Stochastic differential equations with Sobolev drifts and driven by $\alpha $-stable processes." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1057-1079. <http://eudml.org/doc/272007>.
@article{Zhang2013,
abstract = {In this article we prove the pathwise uniqueness for stochastic differential equations in $\mathbb \{R\}^\{d\}$ with time-dependent Sobolev drifts, and driven by symmetric $\alpha $-stable processes provided that $\alpha \in (1,2)$ and its spectral measure is non-degenerate. In particular, the drift is allowed to have jump discontinuity when $\alpha \in (\frac\{2d\}\{d+1\},2)$. Our proof is based on some estimates of Krylov’s type for purely discontinuous semimartingales.},
author = {Zhang, Xicheng},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {pathwise uniqueness; symmetric $\alpha $-stable process; Krylov’s estimate; fractional Sobolev space; pathwise uniqueness; symmetric -stable process; Krylov's estimate; fractional Sobolev space},
language = {eng},
number = {4},
pages = {1057-1079},
publisher = {Gauthier-Villars},
title = {Stochastic differential equations with Sobolev drifts and driven by $\alpha $-stable processes},
url = {http://eudml.org/doc/272007},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Zhang, Xicheng
TI - Stochastic differential equations with Sobolev drifts and driven by $\alpha $-stable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1057
EP - 1079
AB - In this article we prove the pathwise uniqueness for stochastic differential equations in $\mathbb {R}^{d}$ with time-dependent Sobolev drifts, and driven by symmetric $\alpha $-stable processes provided that $\alpha \in (1,2)$ and its spectral measure is non-degenerate. In particular, the drift is allowed to have jump discontinuity when $\alpha \in (\frac{2d}{d+1},2)$. Our proof is based on some estimates of Krylov’s type for purely discontinuous semimartingales.
LA - eng
KW - pathwise uniqueness; symmetric $\alpha $-stable process; Krylov’s estimate; fractional Sobolev space; pathwise uniqueness; symmetric -stable process; Krylov's estimate; fractional Sobolev space
UR - http://eudml.org/doc/272007
ER -
References
top- [1] H. Airault and X. Zhang. Smoothness of indicator functions of some sets in Wiener spaces. J. Math. Pures Appl.79 (2000) 515–523. Zbl0958.60055MR1759438
- [2] D. Aldous. Stopping times and tightness. Ann. Probab.6 (1978) 335–340. Zbl0391.60007MR474446
- [3] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge Studies in Advance Mathematics 93. Cambridge Univ. Press, Cambridge, UK, 2004. MR2072890
- [4] R. Bass. Stochastic differential equations driven by symmetric stable processes. In Seminaire de Probabilities, XXXVI 302–313. Lecture Notes in Math. 1801. Springer, Berlin, 2003. Zbl1039.60056MR1971592
- [5] R. Bass. Stochastic differential equations with jumps. Probab. Surv.1 (2004) 1–19. Zbl1189.60114MR2095564
- [6] K. Bogdan and T. Jakubowski. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys.271 (2007) 179–198. Zbl1129.47033MR2283957
- [7] Z. Chen, P. Kim and R. Song. Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. Available at http://arxiv.org/abs/1011.3273. Zbl1264.60060
- [8] G. Crippa and C. De Lellis. Estimates and regularity results for the DiPerna–Lions flow. J. Reine Angew. Math.616 (2008) 15–46. Zbl1160.34004MR2369485
- [9] G. Da Prato and F. Flandoli. Pathwise uniqueness for a class of SDE in Hilbert spaces and applications. J. Funct. Anal.259 (2010) 243–267. Zbl1202.60096MR2610386
- [10] A. M. Davie. Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Not. IMRN (2007) Art. ID rnm124. Zbl1139.60028MR2377011
- [11] E. Fedrizzi and F. Flandoli. Pathwise uniqueness and continuous dependence for SDEs with nonregular drift. Available at arXiv:1004.3485v1. Zbl1221.60081MR2810591
- [12] F. Flandoli, M. Gubinelli and E. Priola. Well-posedness of the transport equation by stochastic perturbation. Invent. Math.180 (2010) 1–53. Zbl1200.35226MR2593276
- [13] N. Fournier. On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes. Available at http://arxiv.org/abs/1011.0532. Zbl1273.60069MR3060151
- [14] I. Gyöngy and T. Martinez. On stochastic differential equations with locally unbounded drift. Czechoslovak Math. J.51 (2001) 763–783. Zbl1001.60060MR1864041
- [15] S. He, J. Wang and J. Yan. Semimartingale Theory and Stochastic Calculus. Science Press and CRC Press, Beijing, 1992. Zbl0781.60002MR1219534
- [16] N. V. Krylov. Controlled Diffusion Processes. Applications of Mathematics 14. Springer, New York, Berlin, 1980. Translated from the Russian by A. B. Aries. Zbl0459.93002MR601776
- [17] N. V. Krylov and M. Röckner. Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields131 (2005) 154–196. Zbl1072.60050MR2117951
- [18] V. P. Kurenok. Stochastic equations with time-dependent drifts driven by Lévy processes. J. Theoret. Probab.20 (2007) 859–869. Zbl1145.60033MR2359059
- [19] V. P. Kurenok. A note on -estimates for stable integrals with drift. Trans. Amer. Math. Soc.360 (2008) 925–938. Zbl1137.60029MR2346477
- [20] Z. Li and L. Mytnik. Strong solutions for stochastic differential equations with jumps. Available at http://arxiv.org/abs/0910.0950. Zbl1273.60070MR2884224
- [21] E. Priola. Pathwise uniqueness for singular SDEs driven by stable processes. Available at http://arxiv.org/abs/1005.4237. Zbl1254.60063MR2945756
- [22] J. Ren and X. Zhang. Limit theorems for stochastic differential equations with discontinuous coefficients. SIAM J. Math. Anal.43 (2011) 302–321. Zbl1227.60077MR2765692
- [23] K. I. Sato. Lévy Processes and Infinite Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999. Zbl0973.60001MR1739520
- [24] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
- [25] H. Tanaka, M. Tsuchiya and S. Watanabe. Perturbation of drift-type for Lévy processes. J. Math. Kyoto Univ.14 (1974) 73–92. Zbl0281.60064MR368146
- [26] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978. Zbl0387.46033MR503903
- [27] A. J. Veretennikov. On the strong solutions of stochastic differential equations. Theory Probab. Appl.24 (1979) 354–366. Zbl0434.60064MR532447
- [28] X. Zhang. Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients. Electron. J. Probab.16 (2011) 1096–1116. Zbl1225.60099MR2820071
- [29] X. Zhang. Well-posedness and large deviation for degenerate SDEs with Sobolev coefficients. Available at http://arxiv.org/abs/1002.4297. Zbl1262.60056MR3010120
- [30] A. K. Zvonkin. A transformation of the phase space of a diffusion process that removes the drift. Mat. Sb.93 (1974) 129–149. Zbl0306.60049MR336813
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.