Stochastic differential equations driven by symmetric stable processes
Séminaire de probabilités de Strasbourg (2002)
- Volume: 36, page 302-313
Access Full Article
topHow to cite
topBass, Richard F.. "Stochastic differential equations driven by symmetric stable processes." Séminaire de probabilités de Strasbourg 36 (2002): 302-313. <http://eudml.org/doc/114093>.
@article{Bass2002,
author = {Bass, Richard F.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {stochastic differential equations; symmetric stable processes},
language = {eng},
pages = {302-313},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Stochastic differential equations driven by symmetric stable processes},
url = {http://eudml.org/doc/114093},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Bass, Richard F.
TI - Stochastic differential equations driven by symmetric stable processes
JO - Séminaire de probabilités de Strasbourg
PY - 2002
PB - Springer - Lecture Notes in Mathematics
VL - 36
SP - 302
EP - 313
LA - eng
KW - stochastic differential equations; symmetric stable processes
UR - http://eudml.org/doc/114093
ER -
References
top- [Bar] M.T. Barlow. One-dimensional stochastic differential equations with no strong solution. J. London Math. Soc.26 (1982), 335-347. Zbl0456.60062MR675177
- [B1] R.F. Bass. Uniqueness in law for pure jump Markov processes. Probab. Th. rel. Fields79 (1988) 271-287. Zbl0664.60080MR958291
- [B2] R.F. Bass. Diffusions and Elliptic Operators. Springer, Berlin, 1997. Zbl0914.60009MR1483890
- [BH] R.F. Bass and E.P. Hsu. Pathwise uniqueness for reflecting Brownian motion in Euclidean domains. Probab. Th. rel. Fields117 (2000) 183-200. Zbl0957.60070MR1771660
- [Bi] P. Billingsley. Convergence of Probability Measures, 2nd ed. Wiley, New York, 1999. Zbl0944.60003MR1700749
- [E] H.J. Engelbert. On the theorem of T. Yamada and S. Watanabe. Stochastics and Stoch. Rep.36 (1991) 205-216. Zbl0739.60046MR1128494
- [ES] H.J. Engelbert and W. Schmidt. Strong Markov continuous local solutions of one-dimensional stochastic differential equations. Math Nachr.. Part I: 143 (1989) 167-184; Part II: 144 (1989) 241-281; Part III: 151 (1991) 149-197. Zbl0699.60044
- [H] W. Hoh. The martingale problem for a class of pseudo-differential operators. Math. Ann.300 (1994), 121-147. Zbl0805.47045MR1289834
- [JM] J. Jacod and J. Mémin. Weak and strong solutions of stochastic differential equations: existence and stability. In: Stochastic integrals, 169-212. Springer, Berlin-New York, 1981. Zbl0471.60066MR620991
- [Ke] H. Kesten. Hitting probabilities of single points for processes with stationary independent increments. Mem. Amer. Math. Soc. No. 93, Providence, 1969. Zbl0186.50202MR272059
- [Ko] T. Komatsu. On the martingale problem for generators of stable processes with perturbations. Osaka J. Math.21 (1984), 113-132. Zbl0535.60063MR736974
- [Me] P.-A. Meyer. Cours sur les intégrales stochastiques. In: Séminaire de Probabilités X, 245-400. Springer, Berlin, 1976. Zbl0374.60070MR501332
- [PZ] G. Pragarauskas and P.A. Zanzotto. On one-dimensional stochastic differential equations with respect to stable processes. Liet. Mat. Rink.40 (2000) 361-385. Zbl0979.60045MR1803652
- [Sa] K. Sato. Lévy processes and infinitely divisible distributions. Cambridge Univ. Press, Cambridge, 1999. Zbl0973.60001MR1739520
- [Sk] A.V. Skorokhod. Studies in the theory of random processes. Addison-Wesley, Reading, MA, 1965. Zbl0146.37701MR185620
- [St] D.W. Stroock. Diffusion processes associated with Lévy generators. Z.f. Wahrscheinlichkeitstheorie32 (1975) 209-244. Zbl0292.60122MR433614
- [SV] D.W. Stroock and S.R.S. Varadhan. Multidimensional Diffusion Processes. Springer, Berlin, 1979. Zbl0426.60069MR532498
- [YW] T. Yamada and S. Watanabe. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ.11 (1971), 155-167. Zbl0236.60037MR278420
- [Z] P.A. Zanzotto. On solutions of one-dimensional stochastic differential equations drive by stable Lévy motion. Stoch. Proc. and their Applic.68 (1997) 209-228. Zbl0911.60037MR1454833
Citations in EuDML Documents
top- Zenghu Li, Leonid Mytnik, Strong solutions for stochastic differential equations with jumps
- Xicheng Zhang, Stochastic differential equations with Sobolev drifts and driven by -stable processes
- Nicolas Fournier, On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes
- Richard F. Bass, Krzysztof Burdzy, Zhen-Qing Chen, Uniqueness for reflecting brownian motion in lip domains
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.