Genealogies of regular exchangeable coalescents with applications to sampling
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 3, page 706-720
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A.-L. Basdevant and C. Goldschmidt. Asymptotics of the allele frequency spectrum associated with the Bolthausen–Sznitman coalescent. Electron. J. Probab.13 (2008) 486–512. Zbl1190.60006MR2386740
- [2] N. Berestycki. Recent Progress in Coalescent Theory. Ensaios matematicos [Mathematical Surveys] 16. Sociedade Brasileira de Matemática, Rio de Janeiro, 2009. Zbl1204.60002MR2574323
- [3] J. Berestycki, N. Berestycki and V. Limic. The -coalescent speed of coming down from infinity. Ann. Probab.38 (2010) 207–233. Zbl1247.60110MR2599198
- [4] J. Berestycki, N. Berestycki and V. Limic. Asymptotic sampling formulae and particle system representations for -coalescents. Preprint. Available at http://www.cmi.univ-mrs.fr/~vlada/research.html, 2011. Zbl1321.60146
- [5] J. Berestycki, N. Berestycki and J. Schweinsberg. Beta-coalescents and continuous stable random trees. Ann. Probab.35 (2007) 1835–1887. Zbl1129.60067MR2349577
- [6] J. Berestycki, N. Berestycki and J. Schweinsberg. Small-time behavior of beta-coalescents. Ann. Inst. H. Poincaré Probab. Statist.44 (2008) 214–238. Zbl1214.60034MR2446321
- [7] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Univ. Press, Cambridge, 2006. Zbl1107.60002MR2253162
- [8] P. Donnelly and T. Kurtz. Particle representations for measure-valued population models. Ann. Probab.27 (1999) 166–205. Zbl0956.60081MR1681126
- [9] M. Drmota, A. Iksanov, M. Möhle and U. Rösler. Asymptotic results concerning the total branch length of the Bolthausen–Sznitman coalescent. Stochastic Process. Appl.117 (2007) 1404–1421. Zbl1129.60069MR2353033
- [10] R. Durrett. Probability: Theory and Examples, rd edition. Duxbury Advanced Series. Duxbury Press, Belmont, CA, 2004. Zbl0709.60002MR2722836
- [11] R. Durrett and J. Schweinsberg. A coalescent model for the effect of advantageous mutations on the genealogy of a population. Random partitions approximating the coalescence of lineages during a selective sweep. Stochastic Process. Appl. 115 (2005) 1628–1657. Zbl1082.92031MR2165337
- [12] W. J. Ewens. The sampling theory of selectively neutral alleles. Theor. Pop. Biol.3 (1972) 87–112. Zbl0245.92009MR325177
- [13] A. Gnedin, B. Hansen and J. Pitman. Notes on the occupancy problem with infinitely many boxes: General asymptotics and power laws. Probab. Surv.4 (2007) 146–171. Zbl1189.60050MR2318403
- [14] C. Foucart. Distinguished exchangeable coalescents and generalized Fleming–Viot processes with immigration. Preprint. Available at http://arxiv.org/abs/1006.0581, 2011. Zbl1300.60086MR2848380
- [15] J. F. C. Kingman. The coalescent. Stochastic. Process. Appl.13 (1982) 235–248. Zbl0491.60076MR671034
- [16] J. F. C. Kingman. On the genealogy of large populations. J. Appl. Probab.19 (1982) 27–43. Zbl0516.92011MR633178
- [17] G. Li and D. Hedgecock. Genetic heterogeneity, detected by PCR SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. Aquat. Sci.55 (1998) 1025–1033.
- [18] V. Limic. On the speed of coming down from infinity for -coalescent processes. Electron. J. Probab.15 (2010) 217–240. Zbl1203.60111MR2594877
- [19] V. Limic. Coalescent processes and reinforced random walks: A guide through martingales and coupling. Habilitation thesis. Available at http://www.cmi.univ-mrs.fr/~vlada/research.html, 2011.
- [20] M. Möhle. Coalescent processes without proper frequencies and applications to the two-parameter Poisson–Dirichlet coalescent. Preprint, 2009. Zbl1214.60037
- [21] M. Möhle and S. Sagitov. A classification of coalescent processes for haploid exchangeable population models. Ann. Probab.29 (2001) 1547–1562. Zbl1013.92029MR1880231
- [22] E. Pardoux and M. Salamat. On the height and length of the Ancestral Recombination Graph. J. Appl. Probab.46 (2009) 669–689. Zbl1176.60067MR2560895
- [23] J. Pitman. Coalescents with multiple collisions. Ann. Probab.27 (1999) 1870–1902. Zbl0963.60079
- [24] S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab.36 (1999) 1116–1125. Zbl0962.92026
- [25] J. Schweinsberg. Coalescents with simultaneous multiple collisions. Electron. J. Probab.5 (2000) 1–50. Zbl0959.60065
- [26] J. Schweinsberg. The number of small blocks in exchangeable random partitions. ALEA7 (2010) 217–242. Zbl1276.60011
- [27] J. Schweinsberg and R. Durrett. Random partitions approximating the coalescence of lineages during a selective sweep. Ann. Appl. Probab.15 (2005) 1591–1651. Zbl1073.92029