Convergence rates for the full gaussian rough paths

Peter Friz; Sebastian Riedel

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 1, page 154-194
  • ISSN: 0246-0203

Abstract

top
Under the key assumption of finite ρ -variation, ρ [ 1 , 2 ) , of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), ρ = 1 resp. ρ = 1 / ( 2 H ) , we recover and extend the respective results of (Trans. Amer. Math. Soc.361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat.48(2012) 518–550). In particular, we establish an a.s. rate k - ( 1 / ρ - 1 / 2 - ε ) , any ε g t ; 0 , for Wong–Zakai and Milstein-type approximations with mesh-size 1 / k . When applied to fBM this answers a conjecture in the afore-mentioned references.

How to cite

top

Friz, Peter, and Riedel, Sebastian. "Convergence rates for the full gaussian rough paths." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 154-194. <http://eudml.org/doc/272009>.

@article{Friz2014,
abstract = {Under the key assumption of finite $\rho $-variation, $\rho \in [1,2)$, of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), $\rho =1$ resp. $\rho =1/(2H)$, we recover and extend the respective results of (Trans. Amer. Math. Soc.361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat.48(2012) 518–550). In particular, we establish an a.s. rate $k^\{-(1/\rho -1/2-\varepsilon )\}$, any $\varepsilon &gt;0$, for Wong–Zakai and Milstein-type approximations with mesh-size $1/k$. When applied to fBM this answers a conjecture in the afore-mentioned references.},
author = {Friz, Peter, Riedel, Sebastian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {gaussian processes; rough paths; numerical schemes; rates of convergence; Gaussian processes},
language = {eng},
number = {1},
pages = {154-194},
publisher = {Gauthier-Villars},
title = {Convergence rates for the full gaussian rough paths},
url = {http://eudml.org/doc/272009},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Friz, Peter
AU - Riedel, Sebastian
TI - Convergence rates for the full gaussian rough paths
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 154
EP - 194
AB - Under the key assumption of finite $\rho $-variation, $\rho \in [1,2)$, of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), $\rho =1$ resp. $\rho =1/(2H)$, we recover and extend the respective results of (Trans. Amer. Math. Soc.361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat.48(2012) 518–550). In particular, we establish an a.s. rate $k^{-(1/\rho -1/2-\varepsilon )}$, any $\varepsilon &gt;0$, for Wong–Zakai and Milstein-type approximations with mesh-size $1/k$. When applied to fBM this answers a conjecture in the afore-mentioned references.
LA - eng
KW - gaussian processes; rough paths; numerical schemes; rates of convergence; Gaussian processes
UR - http://eudml.org/doc/272009
ER -

References

top
  1. [1] T. Cass and P. Friz. Densities for rough differential equations under Hoermander’s condition. Ann. of Math. (2) 171 (2010) 2115–2141. Zbl1205.60105MR2680405
  2. [2] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields122 (2002) 108–140. Zbl1047.60029MR1883719
  3. [3] A. M. Davie. Differential equations driven by rough paths: an approach via discrete approximation. Appl. Math. Res. Express. AMRX (2007) Art. ID abm009, 40. Zbl1163.34005MR2387018
  4. [4] A. Deya, A. Neuenkirch and S. Tindel. A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 518–550. Zbl1260.60135MR2954265
  5. [5] P. Friz and S. Riedel. Convergence rates for the full Brownian rough paths with applications to limit theorems for stochastic flows. Bull. Sci. Math.135 (2011) 613–628. Zbl1237.60044MR2838093
  6. [6] P. Friz and N. Victoir. Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat.46 (2010) 369–413. Zbl1202.60058MR2667703
  7. [7] P. Friz and N. Victoir. Multidimensional Stochastic Processes as Rough Paths. Cambridge Univ. Press, Cambridge, 2010. Zbl1193.60053MR2604669
  8. [8] P. Friz and N. Victoir. A note on higher dimensional p -variation. Electron. J. Probab.16 (2011) 1880–1899. Zbl1244.60066MR2842090
  9. [9] I. Gyöngy and A. Shmatkov. Rate of convergence of Wong–Zakai approximations for stochastic partial differential equations. Appl. Math. Optim.54 (2006) 315–341. Zbl1106.60050MR2268661
  10. [10] M. Hairer. Rough stochastic PDEs. Comm. Pure Appl. Math.64 (2011) 1547–1585. Zbl1229.60079MR2832168
  11. [11] K. Hara and M. Hino. Fractional order Taylor’s series and the neo-classical inequality. Bull. Lond. Math. Soc.42 (2010) 467–477. Zbl1194.26027MR2651942
  12. [12] Y. Hu and D. Nualart. Rough path analysis via fractional calculus. Trans. Amer. Math. Soc.361 (2009) 2689–2718. Zbl1175.60061MR2471936
  13. [13] S. Janson. Gaussian Hilbert Spaces. Cambridge Univ. Press, New York, 1997. Zbl1143.60005MR1474726
  14. [14] T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoam.14 (1998) 215–310. Zbl0923.34056MR1654527
  15. [15] T. Lyons and Z. Qian. System Control and Rough Paths. Oxford Univ. Press, New York, 2002. Zbl1029.93001MR2036784
  16. [16] A. Neuenkirch, S. Tindel and J. Unterberger. Discretizing the fractional Lévy area. Stochastic Process. Appl.120 (2010) 223–254. Zbl1185.60076MR2576888
  17. [17] C. Reutenauer. Free Lie Algebras. Clarendon Press, New York, 1993. Zbl0798.17001MR1231799
  18. [18] N. Towghi. Multidimensional extension of L. C. Young’s inequality. JIPAM J. Inequal. Pure Appl. Math. 3 (2002) 13 (electronic). Zbl0997.26007MR1906391

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.