Convergence rates for the full gaussian rough paths
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 1, page 154-194
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topFriz, Peter, and Riedel, Sebastian. "Convergence rates for the full gaussian rough paths." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 154-194. <http://eudml.org/doc/272009>.
@article{Friz2014,
abstract = {Under the key assumption of finite $\rho $-variation, $\rho \in [1,2)$, of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), $\rho =1$ resp. $\rho =1/(2H)$, we recover and extend the respective results of (Trans. Amer. Math. Soc.361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat.48(2012) 518–550). In particular, we establish an a.s. rate $k^\{-(1/\rho -1/2-\varepsilon )\}$, any $\varepsilon >0$, for Wong–Zakai and Milstein-type approximations with mesh-size $1/k$. When applied to fBM this answers a conjecture in the afore-mentioned references.},
author = {Friz, Peter, Riedel, Sebastian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {gaussian processes; rough paths; numerical schemes; rates of convergence; Gaussian processes},
language = {eng},
number = {1},
pages = {154-194},
publisher = {Gauthier-Villars},
title = {Convergence rates for the full gaussian rough paths},
url = {http://eudml.org/doc/272009},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Friz, Peter
AU - Riedel, Sebastian
TI - Convergence rates for the full gaussian rough paths
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 154
EP - 194
AB - Under the key assumption of finite $\rho $-variation, $\rho \in [1,2)$, of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), $\rho =1$ resp. $\rho =1/(2H)$, we recover and extend the respective results of (Trans. Amer. Math. Soc.361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat.48(2012) 518–550). In particular, we establish an a.s. rate $k^{-(1/\rho -1/2-\varepsilon )}$, any $\varepsilon >0$, for Wong–Zakai and Milstein-type approximations with mesh-size $1/k$. When applied to fBM this answers a conjecture in the afore-mentioned references.
LA - eng
KW - gaussian processes; rough paths; numerical schemes; rates of convergence; Gaussian processes
UR - http://eudml.org/doc/272009
ER -
References
top- [1] T. Cass and P. Friz. Densities for rough differential equations under Hoermander’s condition. Ann. of Math. (2) 171 (2010) 2115–2141. Zbl1205.60105MR2680405
- [2] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields122 (2002) 108–140. Zbl1047.60029MR1883719
- [3] A. M. Davie. Differential equations driven by rough paths: an approach via discrete approximation. Appl. Math. Res. Express. AMRX (2007) Art. ID abm009, 40. Zbl1163.34005MR2387018
- [4] A. Deya, A. Neuenkirch and S. Tindel. A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat.48 (2012) 518–550. Zbl1260.60135MR2954265
- [5] P. Friz and S. Riedel. Convergence rates for the full Brownian rough paths with applications to limit theorems for stochastic flows. Bull. Sci. Math.135 (2011) 613–628. Zbl1237.60044MR2838093
- [6] P. Friz and N. Victoir. Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat.46 (2010) 369–413. Zbl1202.60058MR2667703
- [7] P. Friz and N. Victoir. Multidimensional Stochastic Processes as Rough Paths. Cambridge Univ. Press, Cambridge, 2010. Zbl1193.60053MR2604669
- [8] P. Friz and N. Victoir. A note on higher dimensional -variation. Electron. J. Probab.16 (2011) 1880–1899. Zbl1244.60066MR2842090
- [9] I. Gyöngy and A. Shmatkov. Rate of convergence of Wong–Zakai approximations for stochastic partial differential equations. Appl. Math. Optim.54 (2006) 315–341. Zbl1106.60050MR2268661
- [10] M. Hairer. Rough stochastic PDEs. Comm. Pure Appl. Math.64 (2011) 1547–1585. Zbl1229.60079MR2832168
- [11] K. Hara and M. Hino. Fractional order Taylor’s series and the neo-classical inequality. Bull. Lond. Math. Soc.42 (2010) 467–477. Zbl1194.26027MR2651942
- [12] Y. Hu and D. Nualart. Rough path analysis via fractional calculus. Trans. Amer. Math. Soc.361 (2009) 2689–2718. Zbl1175.60061MR2471936
- [13] S. Janson. Gaussian Hilbert Spaces. Cambridge Univ. Press, New York, 1997. Zbl1143.60005MR1474726
- [14] T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoam.14 (1998) 215–310. Zbl0923.34056MR1654527
- [15] T. Lyons and Z. Qian. System Control and Rough Paths. Oxford Univ. Press, New York, 2002. Zbl1029.93001MR2036784
- [16] A. Neuenkirch, S. Tindel and J. Unterberger. Discretizing the fractional Lévy area. Stochastic Process. Appl.120 (2010) 223–254. Zbl1185.60076MR2576888
- [17] C. Reutenauer. Free Lie Algebras. Clarendon Press, New York, 1993. Zbl0798.17001MR1231799
- [18] N. Towghi. Multidimensional extension of L. C. Young’s inequality. JIPAM J. Inequal. Pure Appl. Math. 3 (2002) 13 (electronic). Zbl0997.26007MR1906391
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.