Differential equations driven by gaussian signals

Peter Friz; Nicolas Victoir

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 2, page 369-413
  • ISSN: 0246-0203

Abstract

top
We consider multi-dimensional gaussian processes and give a new condition on the covariance, simple and sharp, for the existence of Lévy area(s). gaussian rough paths are constructed with a variety of weak and strong approximation results. Together with a new RKHS embedding, we obtain a powerful – yet conceptually simple – framework in which to analyze differential equations driven by gaussian signals in the rough paths sense.

How to cite

top

Friz, Peter, and Victoir, Nicolas. "Differential equations driven by gaussian signals." Annales de l'I.H.P. Probabilités et statistiques 46.2 (2010): 369-413. <http://eudml.org/doc/241550>.

@article{Friz2010,
abstract = {We consider multi-dimensional gaussian processes and give a new condition on the covariance, simple and sharp, for the existence of Lévy area(s). gaussian rough paths are constructed with a variety of weak and strong approximation results. Together with a new RKHS embedding, we obtain a powerful – yet conceptually simple – framework in which to analyze differential equations driven by gaussian signals in the rough paths sense.},
author = {Friz, Peter, Victoir, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {rough paths; gaussian processes; Gaussian processes},
language = {eng},
number = {2},
pages = {369-413},
publisher = {Gauthier-Villars},
title = {Differential equations driven by gaussian signals},
url = {http://eudml.org/doc/241550},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Friz, Peter
AU - Victoir, Nicolas
TI - Differential equations driven by gaussian signals
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 2
SP - 369
EP - 413
AB - We consider multi-dimensional gaussian processes and give a new condition on the covariance, simple and sharp, for the existence of Lévy area(s). gaussian rough paths are constructed with a variety of weak and strong approximation results. Together with a new RKHS embedding, we obtain a powerful – yet conceptually simple – framework in which to analyze differential equations driven by gaussian signals in the rough paths sense.
LA - eng
KW - rough paths; gaussian processes; Gaussian processes
UR - http://eudml.org/doc/241550
ER -

References

top
  1. [1] S. Aida, S. Kusuoka and D. Stroock. On the support of Wiener functionals. In Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics (Sanda/Kyoto, 1990) 3–34. Pitman Res. Notes Math. Ser. 284. Longman Sci. Tech., Harlow, 1993. Zbl0790.60047MR1354161
  2. [2] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. Zbl0944.60003MR233396
  3. [3] C. Borell. Tail probabilities in Gauss space. In Vector Space Measures and Applications (Proc. Conf., Univ. Dublin, Dublin, 1977), II 73–82. Lecture Notes in Phys. 77. Springer, Berlin, 1978. Zbl0397.60015MR502400
  4. [4] C. Borell. On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191–203. Zbl0555.60008MR764146
  5. [5] C. Borell. On the Taylor series of a Wiener polynomial. In Seminar Notes on Multiple Stochastic Integration, Polynomial Chaos and Their Integration. Case Western Reserve University, Cleveland, 1984. 
  6. [6] T. Cass and P. Friz. Densities for rough differential equations under Hoermander’s condition. Ann. of Math. Accepted, 2008. Available at http://pjm.math.berkeley.edu/scripts/coming.php?jpath=annals. Zbl1205.60105
  7. [7] T. Cass, P. Friz and N. Victoir. Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Amer. Math. Soc. 361 (2009) 3359–3371. Zbl1175.60034MR2485431
  8. [8] K.-T. Chen. Integration of paths, geometric invariants and a generalized Baker–Hausdorff formula. Ann. of Math. (2) 65 (1957) 163–178. Zbl0077.25301MR85251
  9. [9] L. Coutin, P. Friz and N. Victoir. Good rough path sequences and applications to anticipating stochastic calculus. Ann. Probab. 35 (2007) 1172–1193. Zbl1132.60053MR2319719
  10. [10] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108–140. Zbl1047.60029MR1883719
  11. [11] L. Coutin and N. Victoir. Enhanced Gaussian processes and applications. Preprint, 2005. Zbl1181.60057MR2528082
  12. [12] J.-D. Deuschel and D. W. Stroock. Large Deviations. Pure and Applied Mathematics 137. Academic Press, Boston, MA, 1989. Zbl0705.60029MR997938
  13. [13] R. M. Dudley and R. Norvaiša. Differentiability of Six Operators on Nonsmooth Functions and p-variation. Lecture Notes in Mathematics 1703. Springer, Berlin, 1999. (With the collaboration of Jinghua Qian). Zbl0973.46033MR1705318
  14. [14] D. Feyel and A. de La Pradelle. Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006) 860–892. Zbl1110.60031MR2261056
  15. [15] P. Friz and H. Oberhauser. Isoperimetry and rough path regularity. arXiv-preprint, 2007. 
  16. [16] P. Friz and N. Victoir. Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 703–724. Zbl1080.60021MR2144230
  17. [17] P. Friz and N. Victoir. A note on the notion of geometric rough paths. Probab. Theory Related Fields 136 (2006) 395–416. Zbl1108.34052MR2257130
  18. [18] P. Friz and N. Victoir. A variation embedding theorem and applications. J. Funct. Anal. 239 (2006) 631–637. Zbl1114.46022MR2261341
  19. [19] P. Friz and N. Victoir. Large deviation principle for enhanced Gaussian processes. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 775–785. Zbl1172.60306
  20. [20] P. K. Friz. Continuity of the Itô-map for Hölder rough paths with applications to the support theorem in Hölder norm. In Probability and Partial Differential Equations in Modern Applied Mathematics 117–135. IMA Vol. Math. Appl. 140. Springer, New York, 2005. Zbl1090.60038MR2202036
  21. [21] M. Gubinelli. Controlling rough paths. J. Funct. Anal. 216 (2004) 86–140. Zbl1058.60037MR2091358
  22. [22] N. C. Jain and D. Monrad. Gaussian measures in Bp. Ann. Probab. 11 (1983) 46–57. Zbl0504.60045MR682800
  23. [23] M. Ledoux. Isoperimetry and Gaussian analysis. In Lectures on Probability Theory and Statistics (Saint-Flour, 1994) 165–294. Lecture Notes in Math. 1648. Springer, Berlin, 1996. Zbl0874.60005MR1600888
  24. [24] M. Ledoux and M. Talagrand. Probability in Banach spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin, 1991. (Isoperimetry and processes.) Zbl0748.60004MR1102015
  25. [25] A. Lejay. An introduction to rough paths. In Séminaire de Probabilités XXXVII 1–59. Lecture Notes in Math. 1832. Springer, Berlin, 2003. Zbl1041.60051MR2053040
  26. [26] T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215–310. Zbl0923.34056MR1654527
  27. [27] T. Lyons and Z. Qian. System Control and Rough Paths. Oxford Mathematical Monographs. Oxford Univ. Press, 2002. Zbl1029.93001MR2036784
  28. [28] A. Millet and M. Sanz-Solé. Large deviations for rough paths of the fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 245–271. Zbl1087.60035MR2199801
  29. [29] A. Millet and M. Sanz-Sole. Approximation of rough paths of fractional Brownian motion. In Seminar on Stochastic Analysis, Random Fields and Application 275–303. Progress in Probability 59. Birkhäuser, Basel, 2008. Zbl1142.60027MR2401962
  30. [30] J. Musielak and W. Orlicz. On generalized variations. I. Studia Math. 18 (1959) 11–41. Zbl0088.26901MR104771
  31. [31] J. Musielak and Z. Semadeni. Some classes of Banach spaces depending on a parameter. Studia Math. 20 (1961) 271–284. Zbl0099.09401MR137985
  32. [32] D. Nualart. The Malliavin Calculus and Related Topics. Probability and Its Applications. Springer, New York, 1995. Zbl1099.60003MR1344217
  33. [33] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin, 1999. Zbl0917.60006MR1725357
  34. [34] M. Schreiber. Fermeture en probabilité de certains sous-espaces d’un espace L2. Application aux chaos de Wiener. Z. Wahrsch. Verw. Gebiete 14 (1969/70) 36–48. Zbl0186.49803MR413290
  35. [35] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 233. Springer, Berlin, 1979. Zbl0426.60069MR532498
  36. [36] N. Towghi. Multidimensional extension of L. C. Young’s inequality. JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), article 22 (electronic). Zbl0997.26007MR1906391
  37. [37] L. C. Young. An inequality of Hölder type connected with Stieltjes integration. Acta Math. 67 (1936) 251–282. Zbl0016.10404MR1555421

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.