The unscaled paths of branching brownian motion
Simon C. Harris; Matthew I. Roberts
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 2, page 579-608
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. D. Bramson. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math.31 (1978) 531–581. Zbl0361.60052MR494541
- [2] Y. Git. Almost sure path properties of branching diffusion processes. In Séminaire de Probabilités, XXXII 108–127. Lecture Notes in Math. 1686. Springer, Berlin, 1998. Zbl0915.60077MR1655147
- [3] R. Hardy and S. C. Harris. A conceptual approach to a path result for branching Brownian motion. Stochastic Process. Appl.116 (2006) 1992–2013. Zbl1114.60065MR2307069
- [4] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to Lp-convergence of martingales. In Séminaire de Probabilités, XLII 281–330. Lecture Notes in Math. 1979. Springer, Berlin, 2009. Zbl1193.60100MR2599214
- [5] J. W. Harris, S. C. Harris and A. E. Kyprianou. Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: One sided travelling-waves. Ann. Inst. H. Poincaré Probab. Statist.42 (2006) 125–145. Zbl1093.60059MR2196975
- [6] S. C. Harris and M. I. Roberts. Branching Brownian motion: Almost sure growth along scaled paths. In Séminaire de Probabilités. To appear. Preprint, 2009. Available at http://arxiv.org/abs/0906.0291. Zbl1248.60100MR2953356
- [7] S. C. Harris and M. I. Roberts. Measure changes with extinction. Statist. Probab. Lett.79 (2009) 1129–1133. Zbl1163.60309MR2510780
- [8] Y. Hu and Z. Shi. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab.37 (2009) 742–789. Zbl1169.60021MR2510023
- [9] B. Jaffuel. The critical random barrier for the survival of branching random walk with absorption. Preprint, 2009. Available at http://arxiv.org/abs/0911.2227. Zbl1263.60076MR3052402
- [10] H. Kesten. Branching Brownian motion with absorption. Stochastic Process. Appl.7 (1978) 9–47. Zbl0383.60077MR494543
- [11] T. Kurtz, R. Lyons, R. Pemantle and Y. Peres. A conceptual proof of the Kesten–Stigum theorem for multi-type branching processes. In Classical and Modern Branching Processes (Minneapolis, MN, 1994) 181–185. K. B. Athreya and P. Jagers (Eds). IMA Vol. Math. Appl. 84. Springer, New York, 1997. Zbl0868.60068MR1601737
- [12] S. P. Lalley and T. Sellke. A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab.15 (1987) 1052–1061. Zbl0622.60085MR893913
- [13] T.-Y. Lee. Some large-deviation theorems for branching diffusions. Ann. Probab.20 (1992) 1288–1309. Zbl0759.60024MR1175263
- [14] R. Lyons. A simple path to Biggins’ martingale convergence for branching random walk. In Classical and Modern Branching Processes (Minneapolis, MN, 1994) 217–221. K. B. Athreya and P. Jagers (Eds). IMA Vol. Math. Appl. 84. Springer, New York, 1997. Zbl0897.60086MR1601749
- [15] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of LlogL criteria for mean behavior of branching processes. Ann. Probab.23 (1995) 1125–1138. Zbl0840.60077MR1349164
- [16] R. Lyons with Y. Peres. Probability on trees and networks. Unpublished manuscript. Available at http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html.
- [17] A. A. Novikov. On estimates and the asymptotic behavior of nonexit probabilities of a Wiener process to a moving boundary. Math. USSR Sbornik38 (1981) 495–505. Zbl0462.60079