Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation : one sided travelling-waves

J. W. Harris; S. C. Harris; A. E. Kyprianou

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 1, page 125-145
  • ISSN: 0246-0203

How to cite

top

Harris, J. W., Harris, S. C., and Kyprianou, A. E.. "Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation : one sided travelling-waves." Annales de l'I.H.P. Probabilités et statistiques 42.1 (2006): 125-145. <http://eudml.org/doc/77884>.

@article{Harris2006,
author = {Harris, J. W., Harris, S. C., Kyprianou, A. E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching Brownian motion with killing; right-most particle; Fisher-Kolmogorov-Petrovskii-Piskunov equation; martingale convergence},
language = {eng},
number = {1},
pages = {125-145},
publisher = {Elsevier},
title = {Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation : one sided travelling-waves},
url = {http://eudml.org/doc/77884},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Harris, J. W.
AU - Harris, S. C.
AU - Kyprianou, A. E.
TI - Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation : one sided travelling-waves
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 1
SP - 125
EP - 145
LA - eng
KW - branching Brownian motion with killing; right-most particle; Fisher-Kolmogorov-Petrovskii-Piskunov equation; martingale convergence
UR - http://eudml.org/doc/77884
ER -

References

top
  1. [1] D.G. Aronson, H.F. Weinberger, Nonlinear diffusions in population genetics, combustion and nerve propagation, in: Goldstein J. (Ed.), Partial Differential Equations and Related Topics, Lecture Notes in Math., vol. 446, Springer-Verlag, Berlin, 1975. Zbl0325.35050MR427837
  2. [2] K.B. Athreya, Change of measures for Markov chains and the L log L theorem for branching processes, Bernoulli6 (2) (2000) 323-338. Zbl0969.60076MR1748724
  3. [3] J.D. Biggins, A.E. Kyprianou, Measure change in multitype branching, Adv. Appl. Probab.36 (2) (2004) 544-581. Zbl1056.60082MR2058149
  4. [4] A.N. Borodin, P. Salminen, Handbook of Brownian Motion—Facts and Formulae, Probability and its Applications, Birkhäuser, Basel, 1996. Zbl0859.60001
  5. [5] M.D. Bramson, Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math.31 (5) (1978) 531-581. Zbl0361.60052MR494541
  6. [6] M.D. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc.44 (285) (1983), iv+190. Zbl0517.60083MR705746
  7. [7] A. Champneys, S.C. Harris, J. Toland, J. Warren, D. Williams, Algebra, analysis and probability for a coupled system of reaction–diffusion equations, Philos. Trans. Roy. Soc. London350 (1995) 69-112. Zbl0824.60070MR1325205
  8. [8] B. Chauvin, Product martingales and stopping lines for branching Brownian motion, Ann. Probab.19 (3) (1991) 1195-1205. Zbl0738.60079MR1112412
  9. [9] B. Chauvin, A. Rouault, KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees, Probab. Theory Related Fields80 (2) (1988) 299-314. Zbl0653.60077MR968823
  10. [10] B. Chauvin, A. Rouault, Supercritical branching Brownian motion and K-P-P equation in the critical speed-area, Math. Nachr.149 (1990) 41-59. Zbl0724.60091MR1124793
  11. [11] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York, 1955. Zbl0064.33002MR69338
  12. [12] E.B. Dynkin, Superprocesses and partial differential equations, Ann. Probab.21 (3) (1993) 1185-1262. Zbl0806.60066MR1235414
  13. [13] J. Engländer, A.E. Kyprianou, Local extinction versus local exponential growth for spatial branching processes, Ann. Probab.32 (1A) (2004) 78-99. Zbl1056.60083MR2040776
  14. [14] R.A. Fisher, The advance of advantageous genes, Ann. Eugenics7 (1937) 355-369. Zbl63.1111.04MR2079JFM63.1111.04
  15. [15] M. Freidlin, Functional Integration and Partial Differential Equations, Ann. Math. Stud., vol. 109, Princeton University Press, Princeton, NJ, 1985. Zbl0568.60057MR833742
  16. [16] Y. Git, J.W. Harris, S.C. Harris, Exponential growth-rates and large deviations for a typed branching diffusion, University of Bath preprint, 2004. Zbl1131.60077
  17. [17] R. Hardy, S.C. Harris, A new formulation of the spine approach, University of Bath preprint, 2004. 
  18. [18] S.C. Harris, Travelling-waves for the FKPP equation via probabilistic arguments, Proc. Roy. Soc. Edinburgh Sect. A129 (3) (1999) 503-517. Zbl0946.35040MR1693633
  19. [19] S.C. Harris, D. Williams, Large deviations and martingales for a typed branching diffusion. I, Astérisque236 (1996) 133-154, Hommage à P.A. Meyer et J. Neveu. Zbl0857.60088MR1417979
  20. [20] N. Ikeda, M. Nagasawa, S. Watanabe, Branching Markov processes. I, J. Math. Kyoto Univ.8 (1968) 233-278. Zbl0233.60068MR232439
  21. [21] N. Ikeda, M. Nagasawa, S. Watanabe, Branching Markov processes. II, J. Math. Kyoto Univ.8 (1968) 365-410. Zbl0233.60069MR238401
  22. [22] N. Ikeda, M. Nagasawa, S. Watanabe, Branching Markov processes. III, J. Math. Kyoto Univ.9 (1969) 95-160. Zbl0233.60070MR246376
  23. [23] Y. Kametaka, On the nonlinear diffusion equation of Kolmogorov–Petrovskii–Piskunov type, Osaka J. Math.13 (1) (1976) 11-66. Zbl0344.35050MR422875
  24. [24] H. Kesten, Branching Brownian motion with absorption, Stochastic Process. Appl.7 (1) (1978) 9-47. Zbl0383.60077MR494543
  25. [25] A.N. Kolmogorov, I. Petrovski, N. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problem biologique, Mosc. Univ. Bull. Math.1 (1937) 1-25, Translated and reprinted in P. Pelce, Dynamics of Curved Fronts, Academic, San Diego, 1988. Zbl0018.32106
  26. [26] D. Kuhlbusch, On weighted branching processes in random environment, Stochastic Process. Appl.109 (1) (2004) 113-144. Zbl1075.60111MR2024846
  27. [27] A.E. Kyprianou, Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris' probabilistic analysis, Ann. Inst. H. Poincaré Probab. Statist.40 (1) (2004) 53-72. Zbl1042.60057MR2037473
  28. [28] A.E. Kyprianou, A. Rahimzadeh Sani, Martingale convergence and the functional equation in the multi-type branching random walk, Bernoulli7 (4) (2001) 593-604. Zbl1017.60090MR1849369
  29. [29] R. Lyons, R. Pemantle, Y. Peres, Conceptual proofs of L log L criteria for mean behavior of branching processes, Ann. Probab.23 (3) (1995) 1125-1138. Zbl0840.60077MR1349164
  30. [30] R. Lyons, A simple path to Biggins' martingale convergence for branching random walk, in: Athreya K.B., Jagers P. (Eds.), Classical and Modern Branching Processes, Minneapolis, MN, 1994, IMA Vol. Math. Appl., vol. 84, Springer, New York, 1997, pp. 217-221. Zbl0897.60086MR1601749
  31. [31] H.P. McKean, Application of Brownian motion to the equation of Kolmogorov–Petrovskiĭ–Piskunov, Comm. Pure Appl. Math.28 (3) (1975) 323-331. Zbl0316.35053MR400428
  32. [32] H.P. McKean, A correction to: “Application of Brownian motion to the equation of Kolmogorov–Petrovskiĭ–Piskunov” (Comm. Pure Appl. Math. 28 (3) (1975) 323–331), Comm. Pure Appl. Math.29 (5) (1976) 553-554. Zbl0354.35051
  33. [33] J. Neveu, Multiplicative martingales for spatial branching processes, in: Seminar on Stochastic Processes, Princeton, NJ, 1987, Progr. Probab. Statist., vol. 15, Birkhäuser Boston, Boston, MA, 1988, pp. 223-242. Zbl0652.60089MR1046418
  34. [34] P. Olofsson, The x log x condition for general branching processes, J. Appl. Probab.35 (3) (1998) 537-544. Zbl0926.60063MR1659492
  35. [35] R.G. Pinsky, K-P-P-type asymptotics for nonlinear diffusion in a large ball with infinite boundary data and on R d with infinite initial data outside a large ball, Comm. Partial Differential Equations20 (7–8) (1995) 1369-1393. Zbl0831.35078MR1335755
  36. [36] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ.18 (3) (1978) 453-508. Zbl0408.35053MR509494
  37. [37] S. Watanabe, On the branching process for Brownian particles with an absorbing boundary, J. Math. Kyoto Univ.4 (1965) 385-398. Zbl0134.34401MR178505

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.