Invariance principle for the random conductance model with dynamic bounded conductances

Sebastian Andres

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 2, page 352-374
  • ISSN: 0246-0203

Abstract

top
We study a continuous time random walk X in an environment of dynamic random conductances in d . We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for X , and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.

How to cite

top

Andres, Sebastian. "Invariance principle for the random conductance model with dynamic bounded conductances." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 352-374. <http://eudml.org/doc/272014>.

@article{Andres2014,
abstract = {We study a continuous time random walk $X$ in an environment of dynamic random conductances in $\mathbb \{Z\}^\{d\}$. We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for $X$, and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.},
author = {Andres, Sebastian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random conductance model; dynamic environment; invariance principle; ergodic; corrector; point of view of the particle; stochastic interface model},
language = {eng},
number = {2},
pages = {352-374},
publisher = {Gauthier-Villars},
title = {Invariance principle for the random conductance model with dynamic bounded conductances},
url = {http://eudml.org/doc/272014},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Andres, Sebastian
TI - Invariance principle for the random conductance model with dynamic bounded conductances
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 352
EP - 374
AB - We study a continuous time random walk $X$ in an environment of dynamic random conductances in $\mathbb {Z}^{d}$. We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for $X$, and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.
LA - eng
KW - random conductance model; dynamic environment; invariance principle; ergodic; corrector; point of view of the particle; stochastic interface model
UR - http://eudml.org/doc/272014
ER -

References

top
  1. [1] S. Andres, M. T. Barlow, J.-D. Deuschel and B. Hambly. Invariance principle for the random conductance model. Preprint. Probab. Theory Related Fields. To appear. Available at DOI:10.1007/s00440-012-0435-2. Zbl06207007MR3078279
  2. [2] A. Bandyopadhyay and O. Zeitouni. Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat.1 (2006) 205–224. Zbl1115.60104MR2249655
  3. [3] M. T. Barlow and J.-D. Deuschel. Invariance principle for the random conductance model with unbounded conductances. Ann. Probab.38 (2010) 234–276. Zbl1189.60187MR2599199
  4. [4] M. T. Barlow and B. M. Hambly. Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab.14 (2009) 1–16. Zbl1192.60107MR2471657
  5. [5] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields137 (2007) 83–120. Zbl1107.60066MR2278453
  6. [6] M. Biskup. Recent progress on the random concuctance model. Probab. Surv.8 (2011) 294–373. Zbl1245.60098MR2861133
  7. [7] M. Biskup and T. M. Prescott. Functional CLT for random walk among bounded random conductances. Electron J. Probab.12 (2007) 1323–1348. Zbl1127.60093MR2354160
  8. [8] T. Bodineau and B. Graham. Helffer–Sjöstrand representation for conservative dynamics. Markov Process. Related Fields18 (2012) 71–88. Zbl1273.60113MR2952020
  9. [9] C. Boldrighini, R. A. Minlos and A. Pellegrinotti. Random walks in quenched i.i.d. space–time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133–156. Zbl1062.60044MR2052866
  10. [10] C. Boldrighini, R. A. Minlos and A. Pellegrinotti. Discrete-time random motion in a continuous random medium. Stochastic Process. Appl.119 (2009) 3285–3299. Zbl1175.60086MR2568274
  11. [11] T. Delmotte and J.-D. Deuschel. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to ϕ interface model. Probab. Theory Related Fields133 (2005) 358–390. Zbl1083.60082MR2198017
  12. [12] Y. Derriennic and M. Lin. Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math.123 (2001) 93–130. Zbl0988.47009MR1835290
  13. [13] D. Dolgopyat and C. Liverani. Non-perturbative approach to random walk in Markovian environment. Electron. Commun. Probab.14 (2009) 245–251. Zbl1189.60188MR2507753
  14. [14] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Univ. Press, Cambridge, 2010. Zbl1202.60001MR2722836
  15. [15] S. Ethier and T. Kurtz. Markov Processes. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1986. Zbl0592.60049MR838085
  16. [16] T. Funaki. Stochastic Interface Models. In Ecole d’été de probabilités de Saint Flour 2003103–274. Lecture Notes in Mathematics 1869. Springer, Berlin, 2005. Zbl1119.60081MR2228384
  17. [17] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg–Landau ϕ interface models. Commun. Math. Phys.185 (1997) 1–36. Zbl0884.58098MR1463032
  18. [18] G. Giacomin, S. Olla and H. Spohn. Equilibrium fluctuations for ϕ interface model. Ann. Probab.29 (2001) 1138–1172. Zbl1017.60100MR1872740
  19. [19] B. Helffer and J. Sjöstrand. On the correlation for Kac-like models in the convex case. J. Stat. Phys.74 (1994) 349–409. Zbl0946.35508MR1257821
  20. [20] M. Joseph and F. Rassoul-Agha. Almost sure invariance principle for continuous-space random walk in dynamic random environment. ALEA Lat. Am. J. Probab. Math. Stat.8 (2011) 43–57. Zbl1276.60125MR2748407
  21. [21] T. Komorowski, C. Landim and S. Olla. Fluctuations in Markov processes. Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Heidelberg, 2012. Zbl06028501MR2952852
  22. [22] P. Mathieu. Quenched invariance principles for random walks with random conductances. J. Stat. Phys.130 (2008) 1025–1046. Zbl1214.82044MR2384074
  23. [23] M. Maxwell and M. Woodroofe. Central limit theorems for additive functionals of Markov chains. Ann. Probab.28 (2000) 713–724. Zbl1044.60014MR1782272
  24. [24] J.-C. Mourrat. Variance decay for functionals of the environment viewed by the particle. Ann. Inst. Henri Poincaré Probab. Stat.47 (2011) 294–327. Zbl1213.60163MR2779406
  25. [25] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for random walks in a space–time random environment. Probab. Theory Related Fields133 (2005) 299–314. Zbl1088.60094MR2198014
  26. [26] F. Rassoul-Agha and T. Seppäläinen. Almost sure functional central limit theorem for ballistic random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 373–420. Zbl1176.60087MR2521407
  27. [27] F. Redig and F. Völlering, Limit theorems for random walks in dynamic random environment. Preprint. Available at arXiv:1106.4181v2. Zbl1277.82051
  28. [28] W. Rudin. Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973. Zbl0867.46001MR365062
  29. [29] V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields129 (2004) 219–244. Zbl1070.60090MR2063376

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.