Invariance principle for the random conductance model with dynamic bounded conductances
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 352-374
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAndres, Sebastian. "Invariance principle for the random conductance model with dynamic bounded conductances." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 352-374. <http://eudml.org/doc/272014>.
@article{Andres2014,
abstract = {We study a continuous time random walk $X$ in an environment of dynamic random conductances in $\mathbb \{Z\}^\{d\}$. We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for $X$, and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.},
author = {Andres, Sebastian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random conductance model; dynamic environment; invariance principle; ergodic; corrector; point of view of the particle; stochastic interface model},
language = {eng},
number = {2},
pages = {352-374},
publisher = {Gauthier-Villars},
title = {Invariance principle for the random conductance model with dynamic bounded conductances},
url = {http://eudml.org/doc/272014},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Andres, Sebastian
TI - Invariance principle for the random conductance model with dynamic bounded conductances
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 352
EP - 374
AB - We study a continuous time random walk $X$ in an environment of dynamic random conductances in $\mathbb {Z}^{d}$. We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for $X$, and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.
LA - eng
KW - random conductance model; dynamic environment; invariance principle; ergodic; corrector; point of view of the particle; stochastic interface model
UR - http://eudml.org/doc/272014
ER -
References
top- [1] S. Andres, M. T. Barlow, J.-D. Deuschel and B. Hambly. Invariance principle for the random conductance model. Preprint. Probab. Theory Related Fields. To appear. Available at DOI:10.1007/s00440-012-0435-2. Zbl06207007MR3078279
- [2] A. Bandyopadhyay and O. Zeitouni. Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat.1 (2006) 205–224. Zbl1115.60104MR2249655
- [3] M. T. Barlow and J.-D. Deuschel. Invariance principle for the random conductance model with unbounded conductances. Ann. Probab.38 (2010) 234–276. Zbl1189.60187MR2599199
- [4] M. T. Barlow and B. M. Hambly. Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab.14 (2009) 1–16. Zbl1192.60107MR2471657
- [5] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields137 (2007) 83–120. Zbl1107.60066MR2278453
- [6] M. Biskup. Recent progress on the random concuctance model. Probab. Surv.8 (2011) 294–373. Zbl1245.60098MR2861133
- [7] M. Biskup and T. M. Prescott. Functional CLT for random walk among bounded random conductances. Electron J. Probab.12 (2007) 1323–1348. Zbl1127.60093MR2354160
- [8] T. Bodineau and B. Graham. Helffer–Sjöstrand representation for conservative dynamics. Markov Process. Related Fields18 (2012) 71–88. Zbl1273.60113MR2952020
- [9] C. Boldrighini, R. A. Minlos and A. Pellegrinotti. Random walks in quenched i.i.d. space–time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133–156. Zbl1062.60044MR2052866
- [10] C. Boldrighini, R. A. Minlos and A. Pellegrinotti. Discrete-time random motion in a continuous random medium. Stochastic Process. Appl.119 (2009) 3285–3299. Zbl1175.60086MR2568274
- [11] T. Delmotte and J.-D. Deuschel. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to interface model. Probab. Theory Related Fields133 (2005) 358–390. Zbl1083.60082MR2198017
- [12] Y. Derriennic and M. Lin. Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math.123 (2001) 93–130. Zbl0988.47009MR1835290
- [13] D. Dolgopyat and C. Liverani. Non-perturbative approach to random walk in Markovian environment. Electron. Commun. Probab.14 (2009) 245–251. Zbl1189.60188MR2507753
- [14] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Univ. Press, Cambridge, 2010. Zbl1202.60001MR2722836
- [15] S. Ethier and T. Kurtz. Markov Processes. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1986. Zbl0592.60049MR838085
- [16] T. Funaki. Stochastic Interface Models. In Ecole d’été de probabilités de Saint Flour 2003103–274. Lecture Notes in Mathematics 1869. Springer, Berlin, 2005. Zbl1119.60081MR2228384
- [17] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg–Landau interface models. Commun. Math. Phys.185 (1997) 1–36. Zbl0884.58098MR1463032
- [18] G. Giacomin, S. Olla and H. Spohn. Equilibrium fluctuations for interface model. Ann. Probab.29 (2001) 1138–1172. Zbl1017.60100MR1872740
- [19] B. Helffer and J. Sjöstrand. On the correlation for Kac-like models in the convex case. J. Stat. Phys.74 (1994) 349–409. Zbl0946.35508MR1257821
- [20] M. Joseph and F. Rassoul-Agha. Almost sure invariance principle for continuous-space random walk in dynamic random environment. ALEA Lat. Am. J. Probab. Math. Stat.8 (2011) 43–57. Zbl1276.60125MR2748407
- [21] T. Komorowski, C. Landim and S. Olla. Fluctuations in Markov processes. Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Heidelberg, 2012. Zbl06028501MR2952852
- [22] P. Mathieu. Quenched invariance principles for random walks with random conductances. J. Stat. Phys.130 (2008) 1025–1046. Zbl1214.82044MR2384074
- [23] M. Maxwell and M. Woodroofe. Central limit theorems for additive functionals of Markov chains. Ann. Probab.28 (2000) 713–724. Zbl1044.60014MR1782272
- [24] J.-C. Mourrat. Variance decay for functionals of the environment viewed by the particle. Ann. Inst. Henri Poincaré Probab. Stat.47 (2011) 294–327. Zbl1213.60163MR2779406
- [25] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for random walks in a space–time random environment. Probab. Theory Related Fields133 (2005) 299–314. Zbl1088.60094MR2198014
- [26] F. Rassoul-Agha and T. Seppäläinen. Almost sure functional central limit theorem for ballistic random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 373–420. Zbl1176.60087MR2521407
- [27] F. Redig and F. Völlering, Limit theorems for random walks in dynamic random environment. Preprint. Available at arXiv:1106.4181v2. Zbl1277.82051
- [28] W. Rudin. Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973. Zbl0867.46001MR365062
- [29] V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields129 (2004) 219–244. Zbl1070.60090MR2063376
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.