Almost sure functional central limit theorem for ballistic random walk in random environment
Firas Rassoul-Agha; Timo Seppäläinen
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 2, page 373-420
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topRassoul-Agha, Firas, and Seppäläinen, Timo. "Almost sure functional central limit theorem for ballistic random walk in random environment." Annales de l'I.H.P. Probabilités et statistiques 45.2 (2009): 373-420. <http://eudml.org/doc/78027>.
@article{Rassoul2009,
abstract = {We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.},
author = {Rassoul-Agha, Firas, Seppäläinen, Timo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; ballistic; random environment; central limit theorem; invariance principle; point of view of the particle; environment process; Green function; random walk in random environment},
language = {eng},
number = {2},
pages = {373-420},
publisher = {Gauthier-Villars},
title = {Almost sure functional central limit theorem for ballistic random walk in random environment},
url = {http://eudml.org/doc/78027},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Rassoul-Agha, Firas
AU - Seppäläinen, Timo
TI - Almost sure functional central limit theorem for ballistic random walk in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 2
SP - 373
EP - 420
AB - We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.
LA - eng
KW - random walk; ballistic; random environment; central limit theorem; invariance principle; point of view of the particle; environment process; Green function; random walk in random environment
UR - http://eudml.org/doc/78027
ER -
References
top- [1] N. Berger and O. Zeitouni. A quenched invariance principle for certain ballistic random walks in i.i.d. environments, 2008. Available at http://front.math.ucdavis.edu/math.PR/0702306. Zbl1173.82324MR2477380
- [2] E. Bolthausen and A.-S. Sznitman. On the static and dynamic points of view for certain random walks in random environment. Methods Appl. Anal. 9 (2002) 345–375. Special issue dedicated to Daniel W. Stroock and Srinivasa S. R. Varadhan on the occasion of their 60th birthday. Zbl1079.60079MR2023130
- [3] E. Bolthausen and A.-S. Sznitman. Ten Lectures on Random Media. Birkhäuser, Basel, 2002. Zbl1075.60128MR1890289
- [4] J. Bricmont and A. Kupiainen. Random walks in asymmetric random environments. Comm. Math. Phys. 142 (1991) 345–420. Zbl0734.60112MR1137068
- [5] D. L. Burkholder. Distribution function inequalities for martingales. Ann. Probability 1 (1973) 19–42. Zbl0301.60035MR365692
- [6] Y. Derriennic and M. Lin. The central limit theorem for Markov chains started at a point. Probab. Theory Related Fields 125 (2003) 73–76. Zbl1012.60028MR1952457
- [7] R. Durrett. Probability: Theory and Examples, 3rd edition. Brooks/Cole–Thomson, Belmont, CA, 2004. Zbl0709.60002MR1068527
- [8] S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley, New York, 1986. Zbl0592.60049MR838085
- [9] W. Feller. An Introduction to Probability Theory and Its Applications. Vol. II, 2nd edition. Wiley, New York, 1971. Zbl0219.60003MR270403
- [10] I. Y. Goldsheid. Simple transient random walks in one-dimensional random environment: the central limit theorem. Probab. Theory Related Fields 139 (2007) 41–64. Zbl1134.60065MR2322691
- [11] M. Maxwell and M. Woodroofe. Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713–724. Zbl1044.60014MR1782272
- [12] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005) 299–314. Zbl1088.60094MR2198014
- [13] F. Rassoul-Agha and T. Seppäläinen. Ballistic random walk in a random environment with a forbidden direction. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 111–147 (electronic). Zbl1115.60106MR2235176
- [14] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for ballistic random walks in product random environment, 2007. Available at http://front.math.ucdavis.edu/math.PR/0704.1022. Zbl1126.60090
- [15] F. Rassoul-Agha and T. Seppäläinen. Quenched invariance principle for multidimensional ballistic random walk in a random environment with a forbidden direction. Ann. Probab. 35 (2007) 1–31. Zbl1126.60090MR2303942
- [16] M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer, New York, 1971. Zbl0236.60002MR329037
- [17] F. Spitzer. Principles of Random Walks, 2nd edition. Springer, New York, 1976. Zbl0359.60003MR388547
- [18] A.-S. Sznitman. Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc. (JEMS) 2 (2000) 93–143. Zbl0976.60097MR1763302
- [19] A.-S. Sznitman. An effective criterion for ballistic behavior of random walks in random environment. Probab. Theory Related Fields 122 (2002) 509–544. Zbl0995.60097MR1902189
- [20] A.-S. Sznitman. Topics in random walks in random environment. In School and Conference on Probability Theory. ICTP Lect. Notes, XVII. Abdus Salam Int. Cent. Theoret. Phys., Trieste (2004) 203–266 (electronic). Zbl1060.60102MR2198849
- [21] A.-S. Sznitman and O. Zeitouni. An invariance principle for isotropic diffusions in random environment. Invent. Math. 164 (2006) 455–567. Zbl1105.60079MR2221130
- [22] A.-S. Sznitman and M. Zerner. A law of large numbers for random walks in random environment. Ann. Probab. 27 (1999) 1851–1869. Zbl0965.60100MR1742891
- [23] O. Zeitouni. Random Walks in Random Environments. Springer, Berlin, 2004. Zbl1060.60103
- [24] M. P. W. Zerner. Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26 (1998) 1446–1476. Zbl0937.60095MR1675027
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.