Almost sure functional central limit theorem for ballistic random walk in random environment

Firas Rassoul-Agha; Timo Seppäläinen

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 2, page 373-420
  • ISSN: 0246-0203

Abstract

top
We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.

How to cite

top

Rassoul-Agha, Firas, and Seppäläinen, Timo. "Almost sure functional central limit theorem for ballistic random walk in random environment." Annales de l'I.H.P. Probabilités et statistiques 45.2 (2009): 373-420. <http://eudml.org/doc/78027>.

@article{Rassoul2009,
abstract = {We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.},
author = {Rassoul-Agha, Firas, Seppäläinen, Timo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; ballistic; random environment; central limit theorem; invariance principle; point of view of the particle; environment process; Green function; random walk in random environment},
language = {eng},
number = {2},
pages = {373-420},
publisher = {Gauthier-Villars},
title = {Almost sure functional central limit theorem for ballistic random walk in random environment},
url = {http://eudml.org/doc/78027},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Rassoul-Agha, Firas
AU - Seppäläinen, Timo
TI - Almost sure functional central limit theorem for ballistic random walk in random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 2
SP - 373
EP - 420
AB - We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.
LA - eng
KW - random walk; ballistic; random environment; central limit theorem; invariance principle; point of view of the particle; environment process; Green function; random walk in random environment
UR - http://eudml.org/doc/78027
ER -

References

top
  1. [1] N. Berger and O. Zeitouni. A quenched invariance principle for certain ballistic random walks in i.i.d. environments, 2008. Available at http://front.math.ucdavis.edu/math.PR/0702306. Zbl1173.82324MR2477380
  2. [2] E. Bolthausen and A.-S. Sznitman. On the static and dynamic points of view for certain random walks in random environment. Methods Appl. Anal. 9 (2002) 345–375. Special issue dedicated to Daniel W. Stroock and Srinivasa S. R. Varadhan on the occasion of their 60th birthday. Zbl1079.60079MR2023130
  3. [3] E. Bolthausen and A.-S. Sznitman. Ten Lectures on Random Media. Birkhäuser, Basel, 2002. Zbl1075.60128MR1890289
  4. [4] J. Bricmont and A. Kupiainen. Random walks in asymmetric random environments. Comm. Math. Phys. 142 (1991) 345–420. Zbl0734.60112MR1137068
  5. [5] D. L. Burkholder. Distribution function inequalities for martingales. Ann. Probability 1 (1973) 19–42. Zbl0301.60035MR365692
  6. [6] Y. Derriennic and M. Lin. The central limit theorem for Markov chains started at a point. Probab. Theory Related Fields 125 (2003) 73–76. Zbl1012.60028MR1952457
  7. [7] R. Durrett. Probability: Theory and Examples, 3rd edition. Brooks/Cole–Thomson, Belmont, CA, 2004. Zbl0709.60002MR1068527
  8. [8] S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley, New York, 1986. Zbl0592.60049MR838085
  9. [9] W. Feller. An Introduction to Probability Theory and Its Applications. Vol. II, 2nd edition. Wiley, New York, 1971. Zbl0219.60003MR270403
  10. [10] I. Y. Goldsheid. Simple transient random walks in one-dimensional random environment: the central limit theorem. Probab. Theory Related Fields 139 (2007) 41–64. Zbl1134.60065MR2322691
  11. [11] M. Maxwell and M. Woodroofe. Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713–724. Zbl1044.60014MR1782272
  12. [12] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005) 299–314. Zbl1088.60094MR2198014
  13. [13] F. Rassoul-Agha and T. Seppäläinen. Ballistic random walk in a random environment with a forbidden direction. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 111–147 (electronic). Zbl1115.60106MR2235176
  14. [14] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for ballistic random walks in product random environment, 2007. Available at http://front.math.ucdavis.edu/math.PR/0704.1022. Zbl1126.60090
  15. [15] F. Rassoul-Agha and T. Seppäläinen. Quenched invariance principle for multidimensional ballistic random walk in a random environment with a forbidden direction. Ann. Probab. 35 (2007) 1–31. Zbl1126.60090MR2303942
  16. [16] M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer, New York, 1971. Zbl0236.60002MR329037
  17. [17] F. Spitzer. Principles of Random Walks, 2nd edition. Springer, New York, 1976. Zbl0359.60003MR388547
  18. [18] A.-S. Sznitman. Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc. (JEMS) 2 (2000) 93–143. Zbl0976.60097MR1763302
  19. [19] A.-S. Sznitman. An effective criterion for ballistic behavior of random walks in random environment. Probab. Theory Related Fields 122 (2002) 509–544. Zbl0995.60097MR1902189
  20. [20] A.-S. Sznitman. Topics in random walks in random environment. In School and Conference on Probability Theory. ICTP Lect. Notes, XVII. Abdus Salam Int. Cent. Theoret. Phys., Trieste (2004) 203–266 (electronic). Zbl1060.60102MR2198849
  21. [21] A.-S. Sznitman and O. Zeitouni. An invariance principle for isotropic diffusions in random environment. Invent. Math. 164 (2006) 455–567. Zbl1105.60079MR2221130
  22. [22] A.-S. Sznitman and M. Zerner. A law of large numbers for random walks in random environment. Ann. Probab. 27 (1999) 1851–1869. Zbl0965.60100MR1742891
  23. [23] O. Zeitouni. Random Walks in Random Environments. Springer, Berlin, 2004. Zbl1060.60103
  24. [24] M. P. W. Zerner. Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26 (1998) 1446–1476. Zbl0937.60095MR1675027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.