Localization and delocalization for heavy tailed band matrices
Florent Benaych-Georges; Sandrine Péché
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1385-1403
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBenaych-Georges, Florent, and Péché, Sandrine. "Localization and delocalization for heavy tailed band matrices." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1385-1403. <http://eudml.org/doc/272016>.
@article{Benaych2014,
abstract = {We consider some random band matrices with band-width $N^\{\mu \}$ whose entries are independent random variables with distribution tail in $x^\{-\alpha \}$. We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when $\alpha <2(1+\mu ^\{-1\})$, the largest eigenvalues have order $N^\{(1+\mu )/\alpha \}$, are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82–91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles(2006) 351–364) when $\alpha <2$ and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist.45(2005) 589–610) when $\alpha <4$). On the other hand, when $\alpha >2(1+\mu ^\{-1\})$, the largest eigenvalues have order $N^\{\mu /2\}$ and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their $N$ coordinates.},
author = {Benaych-Georges, Florent, Péché, Sandrine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrices; band matrices; heavy tailed random variables; eigenvalue; eigenvector; phase transition; Poisson process},
language = {eng},
number = {4},
pages = {1385-1403},
publisher = {Gauthier-Villars},
title = {Localization and delocalization for heavy tailed band matrices},
url = {http://eudml.org/doc/272016},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Benaych-Georges, Florent
AU - Péché, Sandrine
TI - Localization and delocalization for heavy tailed band matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1385
EP - 1403
AB - We consider some random band matrices with band-width $N^{\mu }$ whose entries are independent random variables with distribution tail in $x^{-\alpha }$. We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when $\alpha <2(1+\mu ^{-1})$, the largest eigenvalues have order $N^{(1+\mu )/\alpha }$, are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82–91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles(2006) 351–364) when $\alpha <2$ and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist.45(2005) 589–610) when $\alpha <4$). On the other hand, when $\alpha >2(1+\mu ^{-1})$, the largest eigenvalues have order $N^{\mu /2}$ and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their $N$ coordinates.
LA - eng
KW - random matrices; band matrices; heavy tailed random variables; eigenvalue; eigenvector; phase transition; Poisson process
UR - http://eudml.org/doc/272016
ER -
References
top- [1] A. Auffinger, G. Ben Arous and S. Péché. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincaré Probab. Statist. 45 (3) (2009) 589–610. Zbl1177.15037MR2548495
- [2] Z. D. Bai and J. W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2009. Zbl1301.60002MR2567175
- [3] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York, 1997. Zbl0863.15001MR1477662
- [4] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues. Classics in Applied Mathematics 53. Reprint of the 1987 original. SIAM, Philadelphia, PA, 2007. Zbl1139.15303MR2325304
- [5] G. Ben Arous and A. Guionnet. The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (3) (2007) 715–751. Zbl1157.60005MR2373441
- [6] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge, 1989. Zbl0667.26003MR1015093
- [7] C. Bordenave and A. Guionnet. Localization and delocalization of eigenvectors for heavy-tailed random matrices. Preprint. Available at arXiv:1201.1862. Zbl1296.15019MR3129806
- [8] P. Cizeau and J.-P. Bouchaud. Theory of Lévy matrices. Phys. Rev. E50 (1994) 1810–1822.
- [9] L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, New York, 2001. Zbl0964.62025MR1843146
- [10] L. Erdös. Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk66 (2011) 67–198. Zbl1230.82032MR2859190
- [11] L. Erdös and A. Knowles. Quantum diffusion and eigenfunction delocalization in a random band matrix model. Comm. Math. Phys. 303 (2) (2011) 509–554. Zbl1226.15024MR2782623
- [12] L. Erdös and A. Knowles. Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré 12 (7) (2011) 1227–1319. Zbl1247.15033MR2846669
- [13] L. Erdös, A. Knowles, H.-T. Yau and J. Yin. Delocalization and diffusion profile for random band matrices. Comm. Math. Phys.323 (2013) 367–416. Zbl1279.15027MR3085669
- [14] L. Erdös, B. Schlein and H. T. Yau. Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys.287 (2009), 641–655. Zbl1186.60005MR2481753
- [15] L. Erdös, B. Schlein and H. T. Yau. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Prob.37 (2009) 815–852. Zbl1175.15028MR2537522
- [16] L. Erdös, B. Schlein and H. T. Yau. Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not.2010 (2010) 436–479. Zbl1204.15043MR2587574
- [17] W. Feller. An Introduction to Probability Theory and Its Applications, vol. II, 2nd edition. Wiley, New York, 1966. Zbl0219.60003MR210154
- [18] Y. V. Fyodorov and A. D. Mirlin. Scaling properties of localization in random band matrices: A -model approach. Phys. Rev. Lett. 67 (18) (1991) 2405–2409. Zbl0990.82529MR1130103
- [19] A. Knowles and J. Yin. Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields155 (2013) 543–582. Zbl1268.15033MR3034787
- [20] A. Knowles and J. Yin. The outliers of a deformed Wigner matrix. Preprint, 2012. Available at arXiv:1207.5619v1. Zbl1306.15034MR3262497
- [21] M. R. Leadbetter, G. Lindgren and H. Rootzén. Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 1983. Zbl0518.60021MR691492
- [22] S. Péché and A. Soshnikov. Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (5–6) (2007) 857–884. Zbl1139.82019MR2363385
- [23] R. Resnick. Extreme Values, Regular Variation and Point Processes. Springer, New York, 1987. Zbl1136.60004MR900810
- [24] J. Schenker. Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290 (3) (2009) 1065–1097. Zbl1179.82079MR2525652
- [25] Y. Sinai and A. Soshnikov. A refinement of Wigner’s semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. (Russian). Funktsional. Anal. i Prilozhen. 32 (2) (1998) 56–79. 96; translation in Funct. Anal. Appl. 32 (1998), no. 2, 114–131. Zbl0930.15025MR1647832
- [26] S. Sodin. The spectral edge of some random band matrices. Ann. Math.172 (2010) 2223–2251. Zbl1210.15039MR2726110
- [27] Y. Sinai and A. Soshnikov. Central limit theorem for traces of large random symmetric matrices. Bol. Soc. Brasil. Mat. 29 (1) (1998) 1–24. Zbl0912.15027MR1620151
- [28] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (3) (1999) 697–733. Zbl1062.82502MR1727234
- [29] A. Soshnikov. Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab.9 (2004) 82–91. Zbl1060.60013MR2081462
- [30] A. Soshnikov. Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351–364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. Zbl1169.15302MR2234922
- [31] T. Spencer. Random banded and sparse matrices. In The Oxford Handbook of Random Matrix Theory 471–488. Oxford Univ. Press, Oxford, 2011. Zbl1236.15074MR2932643
- [32] T. Tao and V. Vu. Random matrices: Universal properties of eigenvectors. Random Matrices Theory Appl. 1 (2012) 1150001. Zbl1248.15031MR2930379
- [33] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2) (2010) 549–572. Zbl1202.15038MR2669449
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.