Poisson convergence for the largest eigenvalues of heavy tailed random matrices

Antonio Auffinger; Gérard Ben Arous; Sandrine Péché

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 3, page 589-610
  • ISSN: 0246-0203

Abstract

top
We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab.9 (2004) 82–91), we prove that, in the absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix.

How to cite

top

Auffinger, Antonio, Ben Arous, Gérard, and Péché, Sandrine. "Poisson convergence for the largest eigenvalues of heavy tailed random matrices." Annales de l'I.H.P. Probabilités et statistiques 45.3 (2009): 589-610. <http://eudml.org/doc/78035>.

@article{Auffinger2009,
abstract = {We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab.9 (2004) 82–91), we prove that, in the absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix.},
author = {Auffinger, Antonio, Ben Arous, Gérard, Péché, Sandrine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {largest eigenvalues statistics; extreme values; random matrices; heavy tails; largest value statistics; largest eigenvalues; random covariance matrices; random symmetric matrices},
language = {eng},
number = {3},
pages = {589-610},
publisher = {Gauthier-Villars},
title = {Poisson convergence for the largest eigenvalues of heavy tailed random matrices},
url = {http://eudml.org/doc/78035},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Auffinger, Antonio
AU - Ben Arous, Gérard
AU - Péché, Sandrine
TI - Poisson convergence for the largest eigenvalues of heavy tailed random matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 3
SP - 589
EP - 610
AB - We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab.9 (2004) 82–91), we prove that, in the absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix.
LA - eng
KW - largest eigenvalues statistics; extreme values; random matrices; heavy tails; largest value statistics; largest eigenvalues; random covariance matrices; random symmetric matrices
UR - http://eudml.org/doc/78035
ER -

References

top
  1. [1] Z. D. Bai, P. R. Krishnaiah and Y. Q. Yin. On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields 78 (1988) 509–521. Zbl0627.62022MR950344
  2. [2] Z. D. Bai and Y. Q. Yin. Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16 (1988) 1729–1741. Zbl0677.60038MR958213
  3. [3] S. Belinschi, A. Dembo and A. Guionnet. Spectral measure of heavy tailed band and covariance random matrices. Commun. Math. Phys. (2009). To appear. Zbl1221.15050MR2511659
  4. [4] G. Ben Arous and A. Guionnet. The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (2008) 715–751. Zbl1157.60005MR2373441
  5. [5] R. Bhatia. Matrix Analysis. Springer, New York, 1996. Zbl0863.15001MR1477662
  6. [6] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge, 1987. Zbl0617.26001MR898871
  7. [7] G. Biroli, J. P. Bouchaud and M. Potters. On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. 78 (2007) 10001. Zbl1244.82029MR2371333
  8. [8] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. Zbl0138.10207MR210154
  9. [9] O. Kallenberg. Foundations of Modern Probability. Springer, New York, 2001. Zbl0996.60001MR1876169
  10. [10] V. Marchenko and L. Pastur. The distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72 (1967) 507–536. Zbl0152.16101MR208649
  11. [11] S. Péché and A. Soshnikov. Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (2007) 857–884. Zbl1139.82019MR2363385
  12. [12] R. Resnick. Extreme Values, Regular Variation and Point Processes 4. Springer, New York, 1987. Zbl0633.60001MR900810
  13. [13] A. Ruzmaikina. Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries. Comm. Math. Phys. 261 (2006) 277–296. Zbl1130.82313MR2191882
  14. [14] A. Soshnikov. A note on universality of the distribution of largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108 (2002) 1033–1056. Zbl1018.62042MR1933444
  15. [15] A. Soshnikov. Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351–364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. Zbl1169.15302MR2234922
  16. [16] A. Soshnikov. Poisson statistics for the largest eigenvalue of Wigner random matrices with heavy tails. Electron. Comm. Probab. 9 (2004) 82–91. Zbl1060.60013MR2081462
  17. [17] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (1999) 697–733. Zbl1062.82502MR1727234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.