Poisson convergence for the largest eigenvalues of heavy tailed random matrices
Antonio Auffinger; Gérard Ben Arous; Sandrine Péché
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 3, page 589-610
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAuffinger, Antonio, Ben Arous, Gérard, and Péché, Sandrine. "Poisson convergence for the largest eigenvalues of heavy tailed random matrices." Annales de l'I.H.P. Probabilités et statistiques 45.3 (2009): 589-610. <http://eudml.org/doc/78035>.
@article{Auffinger2009,
abstract = {We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab.9 (2004) 82–91), we prove that, in the absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix.},
author = {Auffinger, Antonio, Ben Arous, Gérard, Péché, Sandrine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {largest eigenvalues statistics; extreme values; random matrices; heavy tails; largest value statistics; largest eigenvalues; random covariance matrices; random symmetric matrices},
language = {eng},
number = {3},
pages = {589-610},
publisher = {Gauthier-Villars},
title = {Poisson convergence for the largest eigenvalues of heavy tailed random matrices},
url = {http://eudml.org/doc/78035},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Auffinger, Antonio
AU - Ben Arous, Gérard
AU - Péché, Sandrine
TI - Poisson convergence for the largest eigenvalues of heavy tailed random matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 3
SP - 589
EP - 610
AB - We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab.9 (2004) 82–91), we prove that, in the absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix.
LA - eng
KW - largest eigenvalues statistics; extreme values; random matrices; heavy tails; largest value statistics; largest eigenvalues; random covariance matrices; random symmetric matrices
UR - http://eudml.org/doc/78035
ER -
References
top- [1] Z. D. Bai, P. R. Krishnaiah and Y. Q. Yin. On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields 78 (1988) 509–521. Zbl0627.62022MR950344
- [2] Z. D. Bai and Y. Q. Yin. Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16 (1988) 1729–1741. Zbl0677.60038MR958213
- [3] S. Belinschi, A. Dembo and A. Guionnet. Spectral measure of heavy tailed band and covariance random matrices. Commun. Math. Phys. (2009). To appear. Zbl1221.15050MR2511659
- [4] G. Ben Arous and A. Guionnet. The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (2008) 715–751. Zbl1157.60005MR2373441
- [5] R. Bhatia. Matrix Analysis. Springer, New York, 1996. Zbl0863.15001MR1477662
- [6] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge, 1987. Zbl0617.26001MR898871
- [7] G. Biroli, J. P. Bouchaud and M. Potters. On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. 78 (2007) 10001. Zbl1244.82029MR2371333
- [8] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. Zbl0138.10207MR210154
- [9] O. Kallenberg. Foundations of Modern Probability. Springer, New York, 2001. Zbl0996.60001MR1876169
- [10] V. Marchenko and L. Pastur. The distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72 (1967) 507–536. Zbl0152.16101MR208649
- [11] S. Péché and A. Soshnikov. Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (2007) 857–884. Zbl1139.82019MR2363385
- [12] R. Resnick. Extreme Values, Regular Variation and Point Processes 4. Springer, New York, 1987. Zbl0633.60001MR900810
- [13] A. Ruzmaikina. Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries. Comm. Math. Phys. 261 (2006) 277–296. Zbl1130.82313MR2191882
- [14] A. Soshnikov. A note on universality of the distribution of largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108 (2002) 1033–1056. Zbl1018.62042MR1933444
- [15] A. Soshnikov. Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351–364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. Zbl1169.15302MR2234922
- [16] A. Soshnikov. Poisson statistics for the largest eigenvalue of Wigner random matrices with heavy tails. Electron. Comm. Probab. 9 (2004) 82–91. Zbl1060.60013MR2081462
- [17] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (1999) 697–733. Zbl1062.82502MR1727234
Citations in EuDML Documents
top- Florent Benaych-Georges, Sandrine Péché, Localization and delocalization for heavy tailed band matrices
- Kurt Johansson, Universality for certain hermitian Wigner matrices under weak moment conditions
- Arup Bose, Rajat Subhra Hazra, Koushik Saha, Product of exponentials and spectral radius of random k-circulants
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.