Einstein relation for biased random walk on Galton–Watson trees
Gerard Ben Arous; Yueyun Hu; Stefano Olla; Ofer Zeitouni
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 3, page 698-721
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBen Arous, Gerard, et al. "Einstein relation for biased random walk on Galton–Watson trees." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 698-721. <http://eudml.org/doc/272025>.
@article{BenArous2013,
abstract = {We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton–Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.},
author = {Ben Arous, Gerard, Hu, Yueyun, Olla, Stefano, Zeitouni, Ofer},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Galton–Watson tree; Einstein relation; spine representation; Galton-Watson tree},
language = {eng},
number = {3},
pages = {698-721},
publisher = {Gauthier-Villars},
title = {Einstein relation for biased random walk on Galton–Watson trees},
url = {http://eudml.org/doc/272025},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Ben Arous, Gerard
AU - Hu, Yueyun
AU - Olla, Stefano
AU - Zeitouni, Ofer
TI - Einstein relation for biased random walk on Galton–Watson trees
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 698
EP - 721
AB - We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton–Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.
LA - eng
KW - Galton–Watson tree; Einstein relation; spine representation; Galton-Watson tree
UR - http://eudml.org/doc/272025
ER -
References
top- [1] E. Aïdékon. Speed of the biased random walk on a Galton–Watson tree. Preprint, 2011. Available at arXiv:1111.4313v3. Zbl1307.60113
- [2] D. J. Aldous and A. Bandyopadhyay. A survey of max-type recursive distributional equations. Ann. Appl. Probab.15 (2005) 1047–1110. Zbl1105.60012MR2134098
- [3] A. Dembo, N. Gantert, Y. Peres and O. Zeitouni. Large deviations for random walks on Galton–Watson trees: Averaging and uncertainty. Probab. Theory Related Fields122 (2002) 241–288. Zbl0996.60110MR1894069
- [4] A. Dembo and J. D. Deuschel. Markovian perturbation, response and fluctuation dissipation theorem. Ann. Inst. Henri Poincaré Probab. Stat.46 (2010) 822–852. Zbl1196.82092MR2682268
- [5] A. Dembo and N. Sun. Central limit theorem for biased random walk on multi-type Galton–Watson trees. Electron. J. Probab.17 (2012) 1–40. Zbl1255.60031MR2981900
- [6] G. Faraud. A central limit theorem for random walk in random environment on marked Galton–Watson trees. Electron. J. Probab.16 (2011) 174–215. Zbl1228.60115MR2754802
- [7] G. Faraud, Y. Hu and Z. Shi. Almost sure convergence for stochastically biased random walks on trees. Probab. Theory Related Fields154 (2012) 621–660. Zbl1257.05162MR3000557
- [8] W. Feller. An Introduction to Probability Theory and Its Applications, 3rd edition. Wiley, New York, 1968. Zbl0039.13201MR228020
- [9] N. Gantert, P. Mathieu and A. Piatnitski. Einstein relation for reversible diffusions in random environments. Commun. Pure Appl. Math.65 (2012) 187–228. Zbl1264.60062MR2855544
- [10] T. Komorowsky and S. Olla. Einstein relation for random walks in random environments. Stochastic Process. Appl.115 (2005) 1279–1301. Zbl1076.60089MR2152375
- [11] T. Komorowsky and S. Olla. On mobility and Einstein relation for tracers in time-mixing random environments. J. Stat. Phys.118 (2005) 407–435. Zbl1126.82331MR2123642
- [12] J. L. Lebowitz and H. Rost. The Einstein relation for the displacement of a test particle in a random environment. Stochastic Process. Appl.54 (1994) 183–196. Zbl0812.60096MR1307334
- [13] M. Loulakis. Einstein relation for a tagged particle in simple exclusion processes. Comm. Math. Phys.229 (2002) 347–367. Zbl1005.60098MR1923179
- [14] R. Lyons. A simple path to Biggins’ martingale convergence for branching random walk. In Classical and Modern Branching Processes (Minneapolis, MN, 1994) 217–221. IMA Vol. Math. Appl. 84. Springer, New York, 1997. Zbl0897.60086MR1601749
- [15] R. Lyons. Random walks and percolation on trees. Ann. Probab.18 (1990) 931–958. Zbl0714.60089MR1062053
- [16] R. Lyons, R. Pemantle and Y. Peres. Ergodic theory on Galton–Watson trees: Speed of random walk and dimension of harmonic measure. Ergodic Theory Dynam. Systems15 (1995) 593–619. Zbl0819.60077MR1336708
- [17] R. Lyons, R. Pemantle and Y. Peres. Biased random walks on Galton–Watson trees. Probab. Theory Related Fields106 (1996) 249–264. Zbl0859.60076MR1410689
- [18] R. Pemantle and Y. Peres. The critical Ising model on trees, concave recursions and nonlinear capacity. Ann. Probab.38 (2010) 184–206. Zbl1197.60092MR2599197
- [19] Y. Peres and O. Zeitouni. A central limit theorem for biased random walks on Galton–Watson trees. Probab. Theory Related Fields140 (2008) 595–629. Zbl1141.60073MR2365486
- [20] O. Zeitouni. Random walks in random environment. In XXXI Summer School in Probability, St. Flour (2001) 193–312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1060.60103MR2071631
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.