Markovian perturbation, response and fluctuation dissipation theorem
Amir Dembo; Jean-Dominique Deuschel
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 3, page 822-852
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Bakry and M. Emery. Diffusions hypercontractives. In Séminaire de probabilités XIX 179–206. Lecture Notes is Math. 1123. Springer, Berlin, 1985. Zbl0561.60080MR889476
- [2] N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space. de Gruyter, New York, 1991. Zbl0748.60046MR1133391
- [3] J. D. Deuschel and D. W. Stroock. Large Deviations, Reprint edition. Amer. Math. Soc., Providence, RI, 2001. Zbl0705.60029
- [4] J. D. Deuschel and D. W. Stroock. Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models. J. Funct. Anal. 92 (1990) 30–48. Zbl0705.60066MR1064685
- [5] N. Dunford and J. T. Schwartz. Linear Operators, Part I: General Theory. Interscience, New York, 1958. Zbl0084.10402MR1009162
- [6] R. Durrett. Stochastic Calculus: A Practical Introduction. CRC Press, Boca Raton, FL, 1996. Zbl0856.60002MR1398879
- [7] J.-P. Eckmann and M. Hairer. Spectral properties of hypoelliptic operators. Comm. Math. Phys. 235 (2003) 233–257. Zbl1040.35016MR1969727
- [8] A. Einstein. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann. Physics (Leipzig) 17 (1905) 549–560. JFM36.0975.01
- [9] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. de Gruyter, New York, 1994. Zbl1227.31001MR1303354
- [10] J. A. Goldstein. Semigroups of Linear Operators and Applications. Oxford Univ. Press, New York, 1985. Zbl0592.47034MR790497
- [11] T. Hanney and M. R. Evans. Einstein relation for nonequilibrium steady states. J. Stat. Phys. 111 (2003) 1377–1390. Zbl1016.82032MR1975934
- [12] R. Holley and D. Stroock. Diffusions on the infinite dimensional torus. J. Funct. Anal. 42 (1981) 29–63. Zbl0501.58039MR620579
- [13] L. Hörmander. Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. Zbl0156.10701MR222474
- [14] M. Ichiyanagi. Differential transport coefficients and the fluctuation-dissipation theorem for non-equilibrium steady states. Phys. A 201 (1993) 626–648. MR1255955
- [15] D.-Q. Jiang, M. Qian and M.-P. Qian. Mathematical Theory of Nonequilibrium Steady States. Lecture Notes in Math. 1833. Springer, New York, 2004. Zbl1096.82002MR2034774
- [16] R. Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 (1966) 255–284. Zbl0163.23102
- [17] R. Kubo, M. Toda and N. Hashitsume. Statistical Physics II, 2nd edition. Springer, Berlin, 1991. Zbl0757.60109MR1295243
- [18] S. Kusuoka and D.W. Stroock. Application of the Malliavin calculus, II. J. Fac. Sci. Univ. Tokyo IA Math. 32 (1985) 1–76. Zbl0568.60059MR783181
- [19] J. L. Lebowitz and H. Rost. The Einstein relation for the displacement of a test particle in a random environment. Stochastic Process. Appl. 54 (1994) 183–196. Zbl0812.60096MR1307334
- [20] M. Loulakis. Mobility and Einstein relation for a tagged particle in asymmetric mean zero random walk with simple exclusion. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 237–254. Zbl1108.60082MR2124642
- [21] Z.-M. Ma and M. Röckner. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin, 1991. Zbl0826.31001
- [22] H. Nyquist. Thermal agitation of electric charge in conductors. Phys. Rev. 32 (1928) 110–113.
- [23] T. Shiga and A. Shimizu. Infinite dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 (1980) 395–416. Zbl0462.60061MR591802