On the mixed even-spin Sherrington–Kirkpatrick model with ferromagnetic interaction
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 1, page 63-83
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topChen, Wei-Kuo. "On the mixed even-spin Sherrington–Kirkpatrick model with ferromagnetic interaction." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 63-83. <http://eudml.org/doc/272027>.
@article{Chen2014,
abstract = {We study a spin system with both mixed even-spin Sherrington–Kirkpatrick (SK) couplings and Curie–Weiss (CW) interaction. Our main results are: (i) The thermodynamic limit of the free energy is given by a variational formula involving the free energy of the SK model with a change in the external field. (ii) In the presence of a centered Gaussian external field, the positivity of the overlap and the extended Ghirlanda–Guerra identities hold on a dense subset of the temperature parameters. (iii) We establish a general inequality between the magnetization and overlap. (iv) We construct a temperature region in which the magnetization can be quantitatively controlled and deduce different senses of convergence for the magnetization depending on whether the external field is present or not. Our approach is based on techniques from the study of the CW and SK models and results in convex analysis.},
author = {Chen, Wei-Kuo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ferromagnetic interaction; Ghirlanda–Guerra identities; Parisi formula; Sherrington-Kirkpatrick model; ultrametricity; Ghirlanda-Guerra identities},
language = {eng},
number = {1},
pages = {63-83},
publisher = {Gauthier-Villars},
title = {On the mixed even-spin Sherrington–Kirkpatrick model with ferromagnetic interaction},
url = {http://eudml.org/doc/272027},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Chen, Wei-Kuo
TI - On the mixed even-spin Sherrington–Kirkpatrick model with ferromagnetic interaction
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 63
EP - 83
AB - We study a spin system with both mixed even-spin Sherrington–Kirkpatrick (SK) couplings and Curie–Weiss (CW) interaction. Our main results are: (i) The thermodynamic limit of the free energy is given by a variational formula involving the free energy of the SK model with a change in the external field. (ii) In the presence of a centered Gaussian external field, the positivity of the overlap and the extended Ghirlanda–Guerra identities hold on a dense subset of the temperature parameters. (iii) We establish a general inequality between the magnetization and overlap. (iv) We construct a temperature region in which the magnetization can be quantitatively controlled and deduce different senses of convergence for the magnetization depending on whether the external field is present or not. Our approach is based on techniques from the study of the CW and SK models and results in convex analysis.
LA - eng
KW - ferromagnetic interaction; Ghirlanda–Guerra identities; Parisi formula; Sherrington-Kirkpatrick model; ultrametricity; Ghirlanda-Guerra identities
UR - http://eudml.org/doc/272027
ER -
References
top- [1] J. M. G. Amaro de Matos, A. E. Patrick and V. A. Zagrebnov. Random infinite-volume Gibbs states for the Curie–Weiss random field Ising model. J. Stat. Phys.66 (1992) 139–164. Zbl0925.60127MR1149483
- [2] D. Bertsekas. Nonlinear Programming, 2nd edition. Athena Scientific, Belmont, 1999. Zbl0935.90037
- [3] A. Cadel and C. Rovira. The Sherrington Kirkpatrick model with ferromagnetic interaction. Rocky Mountain J. Math.40 (2010) 1441–1471. Zbl1206.60088MR2737374
- [4] W.-K. Chen. The Aizenman–Sims–Starr scheme and Parisi formula for mixed -spin spherical models. Preprint, 2012. Available at arXiv:1204.5115. Zbl1288.60127
- [5] W.-K. Chen and D. Panchenko. An approach to chaos in some mixed -spin models. Probab. Theory Relat. Fields (2012) DOI:10.1007/s00440-012-0460-1. Zbl1287.60115MR3101851
- [6] F. Comets, G. Giacomin and J. L. Lebowitz. The Sherrington–Kirkpatrick model with short range ferromagnetic interactions. C. R. Acad. Sci. Paris Sér. I Math.328 (1999) 57–62. Zbl0999.60087MR1674370
- [7] F. Comets, F. Guerra and F. L. Toninelli. The Ising–Sherrington–Kirkpatrick model in a magnetic field at high temperature. J. Stat. Phys.120 (2005) 147–165. Zbl1142.82003MR2165528
- [8] F. Guerra. Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys.233 (2003) 1–12. Zbl1013.82023MR1957729
- [9] F. Guerra and F. L. Toninelli. The thermodynamical limit in mean field spin glass model. Comm. Math. Phys.230 (2002) 71–79. Zbl1004.82004MR1930572
- [10] F. Guerra and F. L. Toninelli. The infinite volume limit in generalized mean field disordered models. Markov Process. Related Fields9 (2003) 195–207. Zbl1033.82009MR2013660
- [11] D. Panchenko. On the differentiability of the Parisi formula. Electron. Commun. Probab.13 (2008) 241–247. Zbl1205.82092MR2399285
- [12] D. Panchenko. A new representation of the Ghirlanda–Guerra identities with applications. Preprint, 2011. Available at arXiv:1108.0379. Zbl1196.60167
- [13] D. Panchenko. The Parisi ultrametricity conjecture. Ann. of Math. (2) 177 (2013) 383–393. Zbl1270.60060MR2999044
- [14] D. Panchenko. The Parisi formula for mixed -spin models. Preprint, 2011. Available at arXiv:1112.4409. Zbl1292.82020MR3189062
- [15] R. Phelps. Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364. Springer, Berlin, 1989. Zbl0658.46035MR984602
- [16] A. W. Roberts and D. E. Varberg. Convex Functions. Pure and Applied Mathematics 57. Academic Press, New York, 1973. Zbl0271.26009MR442824
- [17] D. Sherrington and S. Kirkpatrick. Solvable model of a spin glass. Phys. Rev. Lett.35 (1975) 1792–1796.
- [18] M. Talagrand. Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics 46. Springer, Berlin, 2003. Zbl1033.82002MR1993891
- [19] M. Talagrand. The Parisi formula. Ann. of Math. (2) 163 (2006) 221–263. Zbl1137.82010MR2195134
- [20] M. Talagrand. Parisi measures. J. Funct. Anal.231 (2006) 269–286. Zbl1117.82025MR2195333
- [21] M. Talagrand. Free energy of the spherical mean filed model. Probab. Theory Related Fields134 (2006) 339–382. Zbl1130.82019MR2226885
- [22] M. Talagrand. Mean Field Models for Spin Glasses. Volume I. Basic Examples. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 54. Springer, Berlin, 2010. Zbl1214.82002MR2731561
- [23] M. Talagrand. Mean Field Models for Spin Glasses. Volume II. Advanced Replica-Symmetry and Low Temperature. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 55. Springer, Berlin, 2011. Zbl1232.82005MR3024566
- [24] A. Toubol. About the original Sherrington–Kirkpatrick model of spin glasses. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 617–622. Zbl0838.60094MR1356564
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.