Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 1, page 160-181
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topKobylanski, Magdalena. "Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 160-181. <http://eudml.org/doc/272029>.
@article{Kobylanski2013,
abstract = {We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.},
author = {Kobylanski, Magdalena},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations principle; diffusions with oblique reflections; viscosity solutions; optimal control; optimal stopping; reflected diffusions; large deviations, small noise limit; Hamilton-Jacobi equations},
language = {eng},
number = {1},
pages = {160-181},
publisher = {Gauthier-Villars},
title = {Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections},
url = {http://eudml.org/doc/272029},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Kobylanski, Magdalena
TI - Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 160
EP - 181
AB - We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.
LA - eng
KW - large deviations principle; diffusions with oblique reflections; viscosity solutions; optimal control; optimal stopping; reflected diffusions; large deviations, small noise limit; Hamilton-Jacobi equations
UR - http://eudml.org/doc/272029
ER -
References
top- [1] R. Atar and P. Dupuis. Large deviations and queing networks: Methods for rate functional identification. Stochastic Process. Appl.84 (1999) 255–296. Zbl0996.60036MR1719274
- [2] R. Azencott. Grandes déviations et applications. In Ecole d’Eté de Probabilités de Saint-Flour VIII-19781–176. Lecture Notes in Math. 774. Springer, Berlin, 1980. Zbl0435.60028MR590626
- [3] G. Barles. Solutions de viscosité des équations de Hamilton–Jacobi. Mathématiques et Applications 17. Springer, Berlin, 1994. Zbl0819.35002MR1613876
- [4] G. Barles. Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations J. Differential Equations106 (1993) 90–106. Zbl0786.35051MR1249178
- [5] G. Barles and A.-P. Blanc. Large deviations estimates for the exit probabilities of a diffusion process through some vanishing parts of the boundary. Adv. Differential Equations2 (1997) 39–84. Zbl1023.60502MR1424763
- [6] G. Barles and P.-L. Lions. Remarques sur les problèmes de réflexion oblique. C. R. Math. Acad. Sci. Paris320 (1995) 69–74. Zbl0831.60068MR1320834
- [7] G. Barles and B. Perthame. Discontinuous solutions of deterministic optimal stopping time problems. Math. Modelling Numer. Anal.21 (1987) 557–579. Zbl0629.49017MR921827
- [8] G. Barles and B. Perthame. Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim.26 (1988) 1133–1148. Zbl0674.49027MR957658
- [9] G. Barles and B. Perthame. Comparison principle for Dirichlet type Hamilton–Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim.21 (1990) 21–44. Zbl0691.49028MR1014943
- [10] B. Bouchard and N. Touzi. Weak dynamic programming principle for viscosity solutions. SIAM J. Control Optim.49 (2011) 948–962. Zbl1228.49028MR2806570
- [11] M. G. Crandall, H. Ishii and P.-L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc.27 (1992) 1–67. Zbl0755.35015MR1118699
- [12] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc.277 (1983) 1–42. Zbl0599.35024MR690039
- [13] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston, MA, 1993. Zbl0793.60030MR1202429
- [14] P. Dupuis and R. S. Ellis. A Weak Convergence Approch to the Theory of Large Deviations. Wiley Ser. Probab. Stat. Wiley, New York, 1997. Zbl0904.60001MR1431744
- [15] P. Dupuis and H. Ishii. On oblique derivative problems for fully nonlinear second-order equations on nonsmooth domains. Nonlinear Anal.15 (1990) 1123–1138. Zbl0736.35044MR1082287
- [16] P. Dupuis and H. Ishii. On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications. Stochastics Stochastics Rep.35 (1991) 31–62. Zbl0721.60062MR1110990
- [17] P. Dupuis and H. Ishii. On oblique derivative problems for fully nonlinear second-order elliptic PDE’s on domains with corners. Hokkaido Math. J.20 (1991) 135–164. Zbl0741.35019MR1096165
- [18] P. Dupuis and H. Ishii. SDEs with oblique reflection on nonsmooth domains. Ann. Probab.21 (1993) 554–580. Zbl0787.60099MR1207237
- [19] N. El Karoui, J.-P. Lepeltier and A. Millet. A probabilistic approach to the reduite in optimal stopping. Probab. Math. Statist.13 (1992) 97–121. Zbl0777.60034MR1199792
- [20] L. C. Evans and H. Ishii. A PDE approach to some aymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. H. Poncaré Anal. Non Linéaire2 (1985) 1–20. Zbl0601.60076MR781589
- [21] J. Feng and T. Kurtz. Large Deviations for Stochastic Processes. Mathematical Surv. Monogr. 131. Amer. Math. Soc., Providence, RI, 2006. Zbl1113.60002MR2260560
- [22] W. H. Fleming. Exit probabilities and optimal stochastic control. Appl. Math. Optim.4 (1978) 329–346. Zbl0398.93068MR512217
- [23] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions. Applications of Math. 25. Springer, New York, 1993. Zbl0773.60070MR1199811
- [24] W. H. Fleming and P. E. Souganidis. A PDE-viscosity solution approach to some problems of large deviations. Ann. Sc. Norm. Super. Pisa Cl. Sci.4 (1986) 171–192. Zbl0622.60032MR876121
- [25] M. I. Freidlin and A. D. Wentzell. Random Perturbations of Dynamical Systems. Comp. Studies in Math. 260. Springer, New York, 1984. Zbl0522.60055MR722136
- [26] H. Ishii. Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDE’s. Duke Math. J.62 (1991) 633–661. Zbl0733.35020MR1104812
- [27] M. Kobylanski. Quelques applications de méthodes d’analyse non-linéaire à la théorie des processus stochastiques. Ph.D. dissertation, l’Université de Tours, 1998.
- [28] M. Kobylanski, M.-C. Quenez and E. Rouy-Mironescu. Optimal multiple stopping time problem. Ann. Appl. Probab.21 (2011) 1365–1399. Zbl1235.60040MR2857451
- [29] P.-L. Lions. Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations, Part I: The dynamic programming principle and applications; Part II: Viscosity solutions and uniqueness. Comm. Partial Defferential Equations 8 (1983) 1101–1174; 1229–1276. Zbl0716.49022MR709164
- [30] P.-L. Lions and A. S. Sznitman. Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math.37 (1984) 511–537. Zbl0598.60060MR745330
- [31] H. Pham. A large deviations approach to optimal long term investment. Finance Stoch.7 (2003) 169–195. Zbl1035.60023MR1968944
- [32] D. W. Stroock. An Introduction to the Theory of Large Deviations. Springer, New York, 1984. Zbl0552.60022MR755154
- [33] S. R. S. Varadhan. Large Deviations and Applications. CBMS–NSF Regional Conf. Ser. Appl. Math. 46. SIAM, Philadelphia, PA, 1984. Zbl0549.60023MR758258
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.