Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections

Magdalena Kobylanski

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 1, page 160-181
  • ISSN: 0246-0203

Abstract

top
We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.

How to cite

top

Kobylanski, Magdalena. "Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 160-181. <http://eudml.org/doc/272029>.

@article{Kobylanski2013,
abstract = {We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.},
author = {Kobylanski, Magdalena},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations principle; diffusions with oblique reflections; viscosity solutions; optimal control; optimal stopping; reflected diffusions; large deviations, small noise limit; Hamilton-Jacobi equations},
language = {eng},
number = {1},
pages = {160-181},
publisher = {Gauthier-Villars},
title = {Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections},
url = {http://eudml.org/doc/272029},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Kobylanski, Magdalena
TI - Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 160
EP - 181
AB - We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.
LA - eng
KW - large deviations principle; diffusions with oblique reflections; viscosity solutions; optimal control; optimal stopping; reflected diffusions; large deviations, small noise limit; Hamilton-Jacobi equations
UR - http://eudml.org/doc/272029
ER -

References

top
  1. [1] R. Atar and P. Dupuis. Large deviations and queing networks: Methods for rate functional identification. Stochastic Process. Appl.84 (1999) 255–296. Zbl0996.60036MR1719274
  2. [2] R. Azencott. Grandes déviations et applications. In Ecole d’Eté de Probabilités de Saint-Flour VIII-19781–176. Lecture Notes in Math. 774. Springer, Berlin, 1980. Zbl0435.60028MR590626
  3. [3] G. Barles. Solutions de viscosité des équations de Hamilton–Jacobi. Mathématiques et Applications 17. Springer, Berlin, 1994. Zbl0819.35002MR1613876
  4. [4] G. Barles. Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations J. Differential Equations106 (1993) 90–106. Zbl0786.35051MR1249178
  5. [5] G. Barles and A.-P. Blanc. Large deviations estimates for the exit probabilities of a diffusion process through some vanishing parts of the boundary. Adv. Differential Equations2 (1997) 39–84. Zbl1023.60502MR1424763
  6. [6] G. Barles and P.-L. Lions. Remarques sur les problèmes de réflexion oblique. C. R. Math. Acad. Sci. Paris320 (1995) 69–74. Zbl0831.60068MR1320834
  7. [7] G. Barles and B. Perthame. Discontinuous solutions of deterministic optimal stopping time problems. Math. Modelling Numer. Anal.21 (1987) 557–579. Zbl0629.49017MR921827
  8. [8] G. Barles and B. Perthame. Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim.26 (1988) 1133–1148. Zbl0674.49027MR957658
  9. [9] G. Barles and B. Perthame. Comparison principle for Dirichlet type Hamilton–Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim.21 (1990) 21–44. Zbl0691.49028MR1014943
  10. [10] B. Bouchard and N. Touzi. Weak dynamic programming principle for viscosity solutions. SIAM J. Control Optim.49 (2011) 948–962. Zbl1228.49028MR2806570
  11. [11] M. G. Crandall, H. Ishii and P.-L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc.27 (1992) 1–67. Zbl0755.35015MR1118699
  12. [12] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc.277 (1983) 1–42. Zbl0599.35024MR690039
  13. [13] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston, MA, 1993. Zbl0793.60030MR1202429
  14. [14] P. Dupuis and R. S. Ellis. A Weak Convergence Approch to the Theory of Large Deviations. Wiley Ser. Probab. Stat. Wiley, New York, 1997. Zbl0904.60001MR1431744
  15. [15] P. Dupuis and H. Ishii. On oblique derivative problems for fully nonlinear second-order equations on nonsmooth domains. Nonlinear Anal.15 (1990) 1123–1138. Zbl0736.35044MR1082287
  16. [16] P. Dupuis and H. Ishii. On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications. Stochastics Stochastics Rep.35 (1991) 31–62. Zbl0721.60062MR1110990
  17. [17] P. Dupuis and H. Ishii. On oblique derivative problems for fully nonlinear second-order elliptic PDE’s on domains with corners. Hokkaido Math. J.20 (1991) 135–164. Zbl0741.35019MR1096165
  18. [18] P. Dupuis and H. Ishii. SDEs with oblique reflection on nonsmooth domains. Ann. Probab.21 (1993) 554–580. Zbl0787.60099MR1207237
  19. [19] N. El Karoui, J.-P. Lepeltier and A. Millet. A probabilistic approach to the reduite in optimal stopping. Probab. Math. Statist.13 (1992) 97–121. Zbl0777.60034MR1199792
  20. [20] L. C. Evans and H. Ishii. A PDE approach to some aymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. H. Poncaré Anal. Non Linéaire2 (1985) 1–20. Zbl0601.60076MR781589
  21. [21] J. Feng and T. Kurtz. Large Deviations for Stochastic Processes. Mathematical Surv. Monogr. 131. Amer. Math. Soc., Providence, RI, 2006. Zbl1113.60002MR2260560
  22. [22] W. H. Fleming. Exit probabilities and optimal stochastic control. Appl. Math. Optim.4 (1978) 329–346. Zbl0398.93068MR512217
  23. [23] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions. Applications of Math. 25. Springer, New York, 1993. Zbl0773.60070MR1199811
  24. [24] W. H. Fleming and P. E. Souganidis. A PDE-viscosity solution approach to some problems of large deviations. Ann. Sc. Norm. Super. Pisa Cl. Sci.4 (1986) 171–192. Zbl0622.60032MR876121
  25. [25] M. I. Freidlin and A. D. Wentzell. Random Perturbations of Dynamical Systems. Comp. Studies in Math. 260. Springer, New York, 1984. Zbl0522.60055MR722136
  26. [26] H. Ishii. Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDE’s. Duke Math. J.62 (1991) 633–661. Zbl0733.35020MR1104812
  27. [27] M. Kobylanski. Quelques applications de méthodes d’analyse non-linéaire à la théorie des processus stochastiques. Ph.D. dissertation, l’Université de Tours, 1998. 
  28. [28] M. Kobylanski, M.-C. Quenez and E. Rouy-Mironescu. Optimal multiple stopping time problem. Ann. Appl. Probab.21 (2011) 1365–1399. Zbl1235.60040MR2857451
  29. [29] P.-L. Lions. Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations, Part I: The dynamic programming principle and applications; Part II: Viscosity solutions and uniqueness. Comm. Partial Defferential Equations 8 (1983) 1101–1174; 1229–1276. Zbl0716.49022MR709164
  30. [30] P.-L. Lions and A. S. Sznitman. Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math.37 (1984) 511–537. Zbl0598.60060MR745330
  31. [31] H. Pham. A large deviations approach to optimal long term investment. Finance Stoch.7 (2003) 169–195. Zbl1035.60023MR1968944
  32. [32] D. W. Stroock. An Introduction to the Theory of Large Deviations. Springer, New York, 1984. Zbl0552.60022MR755154
  33. [33] S. R. S. Varadhan. Large Deviations and Applications. CBMS–NSF Regional Conf. Ser. Appl. Math. 46. SIAM, Philadelphia, PA, 1984. Zbl0549.60023MR758258

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.