On random fractals with infinite branching: definition, measurability, dimensions

Artemi Berlinkov

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 4, page 1080-1089
  • ISSN: 0246-0203

Abstract

top
We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.

How to cite

top

Berlinkov, Artemi. "On random fractals with infinite branching: definition, measurability, dimensions." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1080-1089. <http://eudml.org/doc/272034>.

@article{Berlinkov2013,
abstract = {We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.},
author = {Berlinkov, Artemi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {packing dimension; Minkowski dimension; random fractal},
language = {eng},
number = {4},
pages = {1080-1089},
publisher = {Gauthier-Villars},
title = {On random fractals with infinite branching: definition, measurability, dimensions},
url = {http://eudml.org/doc/272034},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Berlinkov, Artemi
TI - On random fractals with infinite branching: definition, measurability, dimensions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1080
EP - 1089
AB - We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.
LA - eng
KW - packing dimension; Minkowski dimension; random fractal
UR - http://eudml.org/doc/272034
ER -

References

top
  1. [1] M. F. Barnsley, J. E. Hutchinson and Ö. Stenflo. V -variable fractals: Fractals with partial self similarity. Adv. Math.218 (2008) 2051–2088. Zbl1169.28006MR2431670
  2. [2] M. F. Barnsley, J. E. Hutchinson and Ö. Stenflo. V -variable fractals: dimension results. Forum Math.24 (2012) 445–470. Zbl1244.28008MR2926630
  3. [3] D. Beliaev and S. Smirnov. Random conformal snowflakes. Ann. of Math. (2) 172 (2010) 597–615. Zbl1204.30015MR2680427
  4. [4] A. Berlinkov and R. D. Mauldin. Packing measure and dimension of random fractals. J. Theoret. Probab.15 (2002) 695–713. Zbl1010.60010MR1922443
  5. [5] K. J. Falconer. Random Fractals. Math. Proc. Cambrige Philos. Soc.100 (1986) 559–582. Zbl0623.60020MR857731
  6. [6] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Chichester, UK, 2003. Zbl1060.28005MR2118797
  7. [7] J. M. Fraser. Dimensions and measure for typical random fractals. Preprint, 2011. Available at arXiv:1112.4541. Zbl06458466
  8. [8] S. Graf, R. D. Mauldin and S. C. Williams. The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 381 (1988). Zbl0641.60003MR920961
  9. [9] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge, UK, 1995. Zbl0819.28004MR1333890
  10. [10] P. Mattila and R. D. Mauldin. Measure and dimension functions: measurability and densities. Math. Proc. Cambridge Philos. Soc.121 (1997) 81–100. Zbl0885.28005MR1418362
  11. [11] R. D. Mauldin and M. Urbanski. Dimensions and measures in iterated function systems. Proc. London Math. Soc. (3) 73 (1996) 105–154. Zbl0852.28005MR1387085
  12. [12] R. D. Mauldin and M. Urbanski. Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Amer. Math. Soc.351 (1999) 4995–5025. Zbl0940.28009MR1487636
  13. [13] R. D. Mauldin and S. C. Williams. Random recursive constructions: asymtotic geometric and topological properties. Trans. Amer. Math. Soc.295 (1986) 325–346. Zbl0625.54047MR831202
  14. [14] N.-R. Shieh and Y. Xiao. Hausdorff and packing dimensions of the images of random fields. Bernoulli16 (2010) 926–952. Zbl1227.60049MR2759163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.