On random fractals with infinite branching: definition, measurability, dimensions
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 4, page 1080-1089
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBerlinkov, Artemi. "On random fractals with infinite branching: definition, measurability, dimensions." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1080-1089. <http://eudml.org/doc/272034>.
@article{Berlinkov2013,
abstract = {We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.},
author = {Berlinkov, Artemi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {packing dimension; Minkowski dimension; random fractal},
language = {eng},
number = {4},
pages = {1080-1089},
publisher = {Gauthier-Villars},
title = {On random fractals with infinite branching: definition, measurability, dimensions},
url = {http://eudml.org/doc/272034},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Berlinkov, Artemi
TI - On random fractals with infinite branching: definition, measurability, dimensions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1080
EP - 1089
AB - We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.
LA - eng
KW - packing dimension; Minkowski dimension; random fractal
UR - http://eudml.org/doc/272034
ER -
References
top- [1] M. F. Barnsley, J. E. Hutchinson and Ö. Stenflo. -variable fractals: Fractals with partial self similarity. Adv. Math.218 (2008) 2051–2088. Zbl1169.28006MR2431670
- [2] M. F. Barnsley, J. E. Hutchinson and Ö. Stenflo. -variable fractals: dimension results. Forum Math.24 (2012) 445–470. Zbl1244.28008MR2926630
- [3] D. Beliaev and S. Smirnov. Random conformal snowflakes. Ann. of Math. (2) 172 (2010) 597–615. Zbl1204.30015MR2680427
- [4] A. Berlinkov and R. D. Mauldin. Packing measure and dimension of random fractals. J. Theoret. Probab.15 (2002) 695–713. Zbl1010.60010MR1922443
- [5] K. J. Falconer. Random Fractals. Math. Proc. Cambrige Philos. Soc.100 (1986) 559–582. Zbl0623.60020MR857731
- [6] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Chichester, UK, 2003. Zbl1060.28005MR2118797
- [7] J. M. Fraser. Dimensions and measure for typical random fractals. Preprint, 2011. Available at arXiv:1112.4541. Zbl06458466
- [8] S. Graf, R. D. Mauldin and S. C. Williams. The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 381 (1988). Zbl0641.60003MR920961
- [9] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge, UK, 1995. Zbl0819.28004MR1333890
- [10] P. Mattila and R. D. Mauldin. Measure and dimension functions: measurability and densities. Math. Proc. Cambridge Philos. Soc.121 (1997) 81–100. Zbl0885.28005MR1418362
- [11] R. D. Mauldin and M. Urbanski. Dimensions and measures in iterated function systems. Proc. London Math. Soc. (3) 73 (1996) 105–154. Zbl0852.28005MR1387085
- [12] R. D. Mauldin and M. Urbanski. Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Amer. Math. Soc.351 (1999) 4995–5025. Zbl0940.28009MR1487636
- [13] R. D. Mauldin and S. C. Williams. Random recursive constructions: asymtotic geometric and topological properties. Trans. Amer. Math. Soc.295 (1986) 325–346. Zbl0625.54047MR831202
- [14] N.-R. Shieh and Y. Xiao. Hausdorff and packing dimensions of the images of random fields. Bernoulli16 (2010) 926–952. Zbl1227.60049MR2759163
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.