Dynamical attraction to stable processes
Albert M. Fisher; Marina Talet
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 2, page 551-578
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topFisher, Albert M., and Talet, Marina. "Dynamical attraction to stable processes." Annales de l'I.H.P. Probabilités et statistiques 48.2 (2012): 551-578. <http://eudml.org/doc/272041>.
@article{Fisher2012,
abstract = {We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regularly varying time change to the walk, the two paths are forward asymptotic in the flow except for a set of times of density zero. This implies that a.e. time-changed random walk path is a generic point for the flow, i.e. it gives all the expected time averages. For the Brownian case, making use of known results in the literature, one has a stronger statement: the random walk and the Brownian paths are forward asymptotic under the scaling flow (now with no exceptional set of times), at an exponential rate given by the moment assumption.},
author = {Fisher, Albert M., Talet, Marina},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {brownian motion; stable process; almost-sure invariance principle in log density; generic point; pathwise central limit theorem; scaling flow; Brownian motion},
language = {eng},
number = {2},
pages = {551-578},
publisher = {Gauthier-Villars},
title = {Dynamical attraction to stable processes},
url = {http://eudml.org/doc/272041},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Fisher, Albert M.
AU - Talet, Marina
TI - Dynamical attraction to stable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 551
EP - 578
AB - We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regularly varying time change to the walk, the two paths are forward asymptotic in the flow except for a set of times of density zero. This implies that a.e. time-changed random walk path is a generic point for the flow, i.e. it gives all the expected time averages. For the Brownian case, making use of known results in the literature, one has a stronger statement: the random walk and the Brownian paths are forward asymptotic under the scaling flow (now with no exceptional set of times), at an exponential rate given by the moment assumption.
LA - eng
KW - brownian motion; stable process; almost-sure invariance principle in log density; generic point; pathwise central limit theorem; scaling flow; Brownian motion
UR - http://eudml.org/doc/272041
ER -
References
top- [1] J. Aaronson. An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50. Amer. Math. Soc., Providence, RI, 1997. Zbl0882.28013MR1450400
- [2] W. Ambrose and S. Kakutani. Structure and continuity of measurable flows. Duke Math. J.9 (1942) 25–42. Zbl0063.00065MR5800
- [3] I. Berkes and H. Dehling. Some limit theorems in log density. Ann. Probab.21 (1993) 1640–1670. Zbl0785.60014MR1235433
- [4] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. Zbl0944.60003MR233396
- [5] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge/New York, 1987. Zbl0667.26003MR898871
- [6] L. Breiman. On the tail behavior of sums of independent random variables. Z. Wahrsch. Verw. Gebiete9 (1967) 20–25. Zbl0339.60050MR226707
- [7] G. Brosamler. An almost everywhere Central Limit Theorem. Math. Proc. Cambridge Philos. Soc.104 (1988) 561–574. Zbl0668.60029MR957261
- [8] M. Csörgo and P. Révész. Strong Approximations in Probability and Statistics. Academic Press, New York, 1981. Zbl0539.60029MR666546
- [9] W. Feller. Probability Theory, Vol. II. Wiley, New York/Chichester/Brisbane/Toronto, 1966. Zbl0138.10207MR210154
- [10] W. Feller. Probability Theory, Vol. II, 2nd edition. Wiley, New York/Chichester/Brisbane/Toronto, 1971. Zbl0219.60003MR270403
- [11] A. M. Fisher. A Pathwise Central Limit Theorem for random walks. Preprint, Univ. Goettingen, 1989. Ann. Probab. To appear.
- [12] A. M. Fisher. Convex-invariant means and a pathwise central limit theorem. Adv. in Math.63 (1987) 213–246. Zbl0627.60034MR877784
- [13] A. M. Fisher, A. Lopes and M. Talet. Self-similar returns in the transition from finite to infinite measure. Unpublished manuscript, 2010.
- [14] A. M. Fisher and M. Talet. The self-similar dynamics of renewal processes. Electron. J. Probab.16 (2011) 929–961. Zbl1225.60143MR2801456
- [15] S. Fomin. Finite invariant measures in the flows (Russian). Rec. Math. (Mat. Sbornik) N.S. 12 (1943) 99–108. Zbl0063.01405MR9097
- [16] H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton Univ. Press, Princeton, 1981. Zbl0459.28023MR603625
- [17] E. Glasner. Ergodic Theory via Joinings. Mathematicall Surveys and Monographs 101. Amer. Math. Soc., Providence, RI, 2003. Zbl1038.37002MR1958753
- [18] P. Hall. A comedy of errors: The canonical form for a stable characteristic function. Bull. London Math. Soc.13 (1981) 23–27. Zbl0505.60022MR599635
- [19] V. V. Kalashnikov. A complete metric in the space D[0, ∞). J. Math. Sci. 47 (1989) 2725–2730. Zbl0739.60002MR1040101
- [20] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, Berlin/Heidelberg/New York, 1988. Zbl0734.60060MR917065
- [21] J. Komlos, P. Major and G. Tusnady. An approximation of the partial sums of independent RV’s, and the sample DF. I. Z. Wahrsch. Verw. Gebiete32 (1975) 111–131. Zbl0308.60029MR375412
- [22] J. Komlos, P. Major and G. Tusnady. An approximation of the partial sums of independent RV’s, and the sample DF. II. Z. Wahrsch. Verw. Gebiete34 (1976) 33–58. Zbl0307.60045MR402883
- [23] M. Lacey and W. Philipp. A note on the almost sure central limit theorem. Statist. Probab. Lett.9 (1990) 201–205. Zbl0691.60016MR1045184
- [24] P. Lévy. Sur le développement en fraction continue d’un nombre choisi au hasard. Compositio Math.3 (1936) 286–303. Zbl0014.26803MR1556945JFM62.0246.01
- [25] P. Major. Approximation of partial sums of i.i.d. r.v.s when the summands have only two moments. Z. Wahrsch. Verw. Gebiete 35 (1976) 221–229. Zbl0338.60032MR415744
- [26] P. Major. The approximation of partial sums of independent r.v.s. Z. Wahrsch. Verw. Gebiete 35 (1976) 213–220. Zbl0338.60031MR415743
- [27] P. Major. Almost sure functional limit theorems. Part I. The general case. Studia Sci. Math. Hungar. 34 (1998) 273–304. Zbl0921.60033MR1645214
- [28] P. Major. Almost sure functional limit theorems. Part II. The case of independent random variables. Studia Sci. Math. Hungar. 36 (2000) 231–273. Zbl0993.60020MR1768228
- [29] D. Ornstein. Ergodic Theory, Randomness and Dynamical Systems. Yale Mathematical Monographs 5. Yale Univ. Press, New Haven, 1973. Zbl0296.28016MR447525
- [30] V. A. Rohlin. On the fundamental ideas of measure theory. Mat. Sb.25 (1949) 107–150. MR30584
- [31] G. Samorodnitsky and M. Taqqu. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York, 1994. Zbl0925.60027
- [32] P. Schatte. On strong versions of the central limit theorem. Math. Nachr.137 (1988) 249–256. Zbl0661.60031MR968997
- [33] P. Shields. The Theory of Bernoulli Shifts. Univ. Chicago Press, Chicago, 1973. Zbl0308.28011MR442198
- [34] C. Stone. Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc.14 (1963) 694–696. Zbl0116.35602MR153046
- [35] V. Strassen. An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete3 (1964) 211–226. Zbl0132.12903MR175194
- [36] V. Strassen. Almost-sure behavior of sums of independent random variables and martingales. In Proc. 5th Berkeley Symp. Math. Stat. and Prob., Vol. 2 315–343. Univ. California Press, Berkeley, CA, 1965. Zbl0201.49903MR214118
- [37] P. Walters. An Introduction to Ergodic Theory. Springer, New York/Berlin, 1982. Zbl0299.28012MR648108
- [38] W. Whitt. Some useful functions for functional limit theorems. Math. Oper. Res.5 (1980) 67–85. Zbl0428.60010MR561155
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.