A remarkable σ -finite measure unifying supremum penalisations for a stable Lévy process

Yuko Yano

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 4, page 1014-1032
  • ISSN: 0246-0203

Abstract

top
The σ -finite measure 𝒫 sup which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy processes and Chaumont’s h -transform processes with respect to these functions are utilized for the construction of 𝒫 sup .

How to cite

top

Yano, Yuko. "A remarkable $\sigma $-finite measure unifying supremum penalisations for a stable Lévy process." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1014-1032. <http://eudml.org/doc/272042>.

@article{Yano2013,
abstract = {The $\sigma $-finite measure $\mathcal \{P\} _\{\sup \}$ which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy processes and Chaumont’s $h$-transform processes with respect to these functions are utilized for the construction of $\mathcal \{P\} _\{\sup \}$.},
author = {Yano, Yuko},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy processes; stable Lévy processes; reflected processes; penalisation; path decomposition; conditioning to stay negative/positive; conditioning to hit $0$ continuously; Lévy process; stable process; reflected process; penalisation; Chaumont’s -transform process; path decomposition; conditioning to stay positive/negative; conditioning to hit 0 continuously},
language = {eng},
number = {4},
pages = {1014-1032},
publisher = {Gauthier-Villars},
title = {A remarkable $\sigma $-finite measure unifying supremum penalisations for a stable Lévy process},
url = {http://eudml.org/doc/272042},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Yano, Yuko
TI - A remarkable $\sigma $-finite measure unifying supremum penalisations for a stable Lévy process
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1014
EP - 1032
AB - The $\sigma $-finite measure $\mathcal {P} _{\sup }$ which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy processes and Chaumont’s $h$-transform processes with respect to these functions are utilized for the construction of $\mathcal {P} _{\sup }$.
LA - eng
KW - Lévy processes; stable Lévy processes; reflected processes; penalisation; path decomposition; conditioning to stay negative/positive; conditioning to hit $0$ continuously; Lévy process; stable process; reflected process; penalisation; Chaumont’s -transform process; path decomposition; conditioning to stay positive/negative; conditioning to hit 0 continuously
UR - http://eudml.org/doc/272042
ER -

References

top
  1. [1] J. Azéma and M. Yor. Une solution simple au problème de Skorokhod. In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78) 90–115. Lecture Notes in Math. 721. Springer, Berlin, 1979. Zbl0414.60055MR544782
  2. [2] J. Azéma and M. Yor. Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod.” In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78) 625–633. Lecture Notes in Math. 721. Springer, Berlin, 1979. MR544832
  3. [3] J. Bertoin. Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stochastic Process. Appl.47 (1993) 17–35. Zbl0786.60101MR1232850
  4. [4] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. MR1406564
  5. [5] N. Bingham. Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete26 (1973) 273–296. Zbl0238.60036MR415780
  6. [6] L. Chaumont. Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl.64 (1996) 39–54. Zbl0879.60072MR1419491
  7. [7] L. Chaumont. Excursion normalisée, méandre et pont pour des processus stables. Bull. Sci. Math.121 (1997) 377–403. MR1465814
  8. [8] L. Chaumont. On the law of the supremum of Lévy processes. Ann. Probab.41 (2013) 1191–1217. Zbl1277.60081MR3098676
  9. [9] L. Chaumont and R. A. Doney. On Lévy processes conditioned to stay positive. Electron. J. Probab. 10 (2005) 948–961 (electronic); corrections in 13 (2008) 1–4 (electronic). Zbl1109.60039
  10. [10] R. A. Doney. Fluctuation Theory for Lévy Processes. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23, 2005. Lecture Notes in Math. 1897. Springer, Berlin, 2007. 
  11. [11] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Springer, New York, 1991. Zbl0734.60060MR1121940
  12. [12] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Universitext. Springer, Berlin, 2006. Zbl1104.60001MR2250061
  13. [13] D. Monrad and M. L. Silverstein. Stable processes: Sample function growth at a local minimum. Z. Wahrsch. Verw. Gebiete49 (1979) 177–210. Zbl0431.60041MR543993
  14. [14] J. Najnudel and A. Nikeghbali. On some properties of a universal sigma-finite measure associated with a remarkable class of submartingales. Publ. Res. Inst. Math. Sci.47 (2011) 911–936. Zbl1266.60065MR2880381
  15. [15] J. Najnudel, B. Roynette and M. Yor. A Global View of Brownian Penalisations. MSJ Memoirs 19. Mathematical Society of Japan, Tokyo, 2009. Zbl1180.60004MR2528440
  16. [16] J. Obłój. The Skorokhod embedding problem and its offsprings. Probability Surveys1 (2004) 321–390. Zbl1189.60088MR2068476
  17. [17] J. Pitman and M. Yor. Decomposition at the maximum for excursions and bridges of one-dimensional diffusions. In Itô’s Stochastic Calculus and Probability Theory 293–310. Springer, Tokyo, 1996. MR1439532
  18. [18] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Springer, Berlin, 1999. Zbl0917.60006MR1725357
  19. [19] B. Roynette, P. Vallois and M. Yor. Limiting laws associated with Brownian motion perturbed by normalized exponential weights, I. Studia Sci. Math. Hungar.43 (2006) 171–246. Zbl1121.60027MR2229621
  20. [20] B. Roynette, P. Vallois and M. Yor. Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II. Studia Sci. Math. Hungar.43 (2006) 295–360. Zbl1121.60004MR2253307
  21. [21] B. Roynette, P. Vallois and M. Yor. Some penalisations of the Wiener measure. Jpn. J. Math.1 (2006) 263–290. Zbl1160.60315MR2261065
  22. [22] B. Roynette and M. Yor. Penalising Brownian Paths. Lecture Notes in Math. 1969. Springer, Berlin, 2009. MR2504013
  23. [23] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Translated from the 1990 Japanese original, Revised by the author. Cambridge Studies in Advanced Mathematics 68. Cambridge University Press, Cambridge, 1999. MR1739520
  24. [24] M. L. Silverstein. Classification of coharmonic and coinvariant functions for Lévy processes. Ann. Probab.8 (1980) 539–575. Zbl0459.60063MR573292
  25. [25] K. Yano. Two kinds of conditionings for stable Lévy processes. In Proceedings of the 1st MSJ-SI, “Probabilistic Approach to Geometry,” 493–503. Adv. Stud. Pure Math. 57. Math. Soc. Japan, Tokyo. Zbl1200.60039MR2648275
  26. [26] K. Yano. Excursions away from a regular point for one-dimensional symmetric Lévy processes without Gaussian part. Potential Anal.32 (2010) 305–341. Zbl1188.60023MR2603019
  27. [27] K. Yano, Y. Yano and M. Yor. Penalising symmetric stable Lévy paths. J. Math. Soc. Japan61 (2009) 757–798. Zbl1180.60008MR2552915
  28. [28] K. Yano, Y. Yano and M. Yor. Penalisation of a stable Lévy process involving its one-sided supremum. Ann. Inst. H. Poincaré Probab. Statist.46 (2010) 1042–1054. Zbl1208.60046MR2744885
  29. [29] V. M. Zolotarev. One-Dimensional Stable Distributions. Translations of Mathematical Monographs 65. Amer. Math. Soc., Providence, RI, 1986. MR854867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.