Gibbs–non-Gibbs properties for evolving Ising models on trees
Aernout C. D. van Enter; Victor N. Ermolaev; Giulio Iacobelli; Christof Külske
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 3, page 774-791
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topvan Enter, Aernout C. D., et al. "Gibbs–non-Gibbs properties for evolving Ising models on trees." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 774-791. <http://eudml.org/doc/272050>.
@article{vanEnter2012,
abstract = {In this paper we study homogeneous Gibbs measures on a Cayley tree, subjected to an infinite-temperature Glauber evolution, and consider their (non-)Gibbsian properties. We show that the intermediate Gibbs state (which in zero field is the free-boundary-condition Gibbs state) behaves differently from the plus and the minus state. E.g. at large times, all configurations are bad for the intermediate state, whereas the plus configuration never is bad for the plus state. Moreover, we show that for each state there are two transitions. For the intermediate state there is a transition from a Gibbsian regime to a non-Gibbsian regime where some, but not all configurations are bad, and a second one to a regime where all configurations are bad. For the plus and minus state, the two transitions are from a Gibbsian regime to a non-Gibbsian one and then back to a Gibbsian regime again.},
author = {van Enter, Aernout C. D., Ermolaev, Victor N., Iacobelli, Giulio, Külske, Christof},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {non-gibbsianness; Ising models; tree graphs; Cayley tree; Glauber dynamics; non-Gibbsianness},
language = {eng},
number = {3},
pages = {774-791},
publisher = {Gauthier-Villars},
title = {Gibbs–non-Gibbs properties for evolving Ising models on trees},
url = {http://eudml.org/doc/272050},
volume = {48},
year = {2012},
}
TY - JOUR
AU - van Enter, Aernout C. D.
AU - Ermolaev, Victor N.
AU - Iacobelli, Giulio
AU - Külske, Christof
TI - Gibbs–non-Gibbs properties for evolving Ising models on trees
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 774
EP - 791
AB - In this paper we study homogeneous Gibbs measures on a Cayley tree, subjected to an infinite-temperature Glauber evolution, and consider their (non-)Gibbsian properties. We show that the intermediate Gibbs state (which in zero field is the free-boundary-condition Gibbs state) behaves differently from the plus and the minus state. E.g. at large times, all configurations are bad for the intermediate state, whereas the plus configuration never is bad for the plus state. Moreover, we show that for each state there are two transitions. For the intermediate state there is a transition from a Gibbsian regime to a non-Gibbsian regime where some, but not all configurations are bad, and a second one to a regime where all configurations are bad. For the plus and minus state, the two transitions are from a Gibbsian regime to a non-Gibbsian one and then back to a Gibbsian regime again.
LA - eng
KW - non-gibbsianness; Ising models; tree graphs; Cayley tree; Glauber dynamics; non-Gibbsianness
UR - http://eudml.org/doc/272050
ER -
References
top- [1] P. M. Bleher, J. Ruiz and V. A. Zagrebnov. On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice. J. Statist. Phys.79 (1995) 473–482. Zbl1081.82515MR1325591
- [2] D. Dereudre and S. Rœlly. Propagation of Gibbsianness for infinite-dimensional gradient Brownian diffusions. J. Statist. Phys.121 (2005) 511–551. Zbl1127.82039MR2185338
- [3] V. N. Ermolaev and C. Külske. Low-temperature dynamics of the Curie–Weiss model: Periodic orbits, multiple histories and loss of Gibbsianness. J. Statist. Phys.141 (2010) 727–756. Zbl1208.82042MR2739308
- [4] R. Fernández. Gibbsianness and non-Gibbsianness in lattice random fields. In Les Houches Summer School, Session LXXXIII, 2005. Mathematical Statistical Physics, A. Elsevier, Amsterdam, 2006. Zbl05723808MR2581896
- [5] H. O. Georgii. Gibbs Measures and Phase Transitions. de Gruyter, Berlin, 1988. ISBN 0-89925-462-4. Zbl1225.60001MR956646
- [6] O. Häggström. Almost sure quasilocality fails for the random-cluster model on a tree. J. Statist. Phys.84 (1996) 1351–1361. Zbl1081.82520MR1412082
- [7] O. Häggström and C. Külske. Gibbs properties of the fuzzy Potts model on trees and in mean field. Markov Process. Related Fields10 (2004) 477–506. Zbl1210.82023MR2097868
- [8] D. Ioffe. On the extremality of the disordered state for the Ising model on the Bethe lattice. Lett. Math. Phys.37 (1996) 137–143. Zbl0848.60090MR1391195
- [9] C. Külske and A. A. Opoku. The posterior metric and the goodness of Gibbsianness for transforms of Gibbs measures. Electron. J. Probab.13 (2008) 1307–1344. Zbl1190.60096MR2438808
- [10] C. Külske and F. Redig. Loss without recovery of Gibbsianness during diffusion of continuous spins. Probab. Theory Related Fields135 (2006) 428–456. Zbl1095.60027MR2240694
- [11] A. Le Ny. Fractal failure of quasilocality for a majority rule transformation on a tree. Lett. Math. Phys.54 (2000) 11–24. Zbl0989.82013MR1846719
- [12] A. Le Ny and F. Redig. Short time conservation of Gibbsianness under local stochastic evolutions. J. Statist. Phys.109 (2002) 1073–1090. Zbl1015.60097MR1938286
- [13] A. A. Opoku. On Gibbs measures of transforms of lattice and mean-field systems. Ph.D. thesis, Rijksuniversiteit Groningen, 2009. Zbl1192.82004
- [14] R. Pemantle and J. Steif. Robust phase tramsitions for Heisenberg and other models on general trees. Ann. Probab.27 (1999) 876–912. Zbl0981.60096MR1698979
- [15] F. Redig, S. Rœlly and W. Ruszel. Short-time Gibbsianness for infinite-dimensional diffusions with space–time interaction. J. Statist. Phys.138 (2010) 1124–1144. Zbl1188.82047MR2601426
- [16] A. C. D. van Enter and W. M. Ruszel. Loss and recovery of Gibbsianness for spins in small external fields. J. Math. Phys. 49 (2008) 125208. Zbl1159.81345MR2484339
- [17] A. C. D. van Enter and W. M. Ruszel. Gibbsianness versus non-Gibbsianness of time-evolved planar rotor models. Stochastic Processes Appl.119 (2009) 1866–1888. Zbl1173.82007MR2519348
- [18] A. C. D. van Enter, R. Fernández, F. Den Hollander and F. Redig. Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures. Comm. Math. Phys.226 (2002) 101–130. Zbl0990.82018MR1889994
- [19] A. C. D. van Enter, R. Fernández, F. Den Hollander and F. Redig. A large-deviation view on dynamical Gibbs–non-Gibbs transitions. Mosc. Math. J.10 (2010) 687–711. Zbl1221.82046MR2791053
- [20] A. C. D. van Enter, R. Fernández and A. D. Sokal. Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Statist. Phys.72 (1993) 879–1167. Zbl1101.82314MR1241537
- [21] A. C. D. van Enter, C. Külske, A. A. Opoku and W. M. Ruszel. Gibbs–non-Gibbs properties for -vector lattice and mean-field models. Braz. J. Probab. Stat.24 (2010) 226–255. Zbl1200.82015MR2643565
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.