From a kinetic equation to a diffusion under an anomalous scaling
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1301-1322
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBasile, Giada. "From a kinetic equation to a diffusion under an anomalous scaling." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1301-1322. <http://eudml.org/doc/272059>.
@article{Basile2014,
abstract = {A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process $(K(t),i(t),Y(t))$ on $(\mathbb \{T\} ^\{2\}\times \lbrace 1,2\rbrace \times \mathbb \{R\} ^\{2\})$, where $\mathbb \{T\} ^\{2\}$ is the two-dimensional torus. Here $(K(t),i(t))$ is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. $Y(t)$ is an additive functional of $K$, defined as $\int _\{0\}^\{t\}v(K(s))\,\mathrm \{d\}s$, where $|v|\sim 1$ for small $k$. We prove that the rescaled process $(N\ln N)^\{-1/2\}Y(Nt)$ converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.},
author = {Basile, Giada},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {anomalous thermal conductivity; kinetic limit; invariance principle},
language = {eng},
number = {4},
pages = {1301-1322},
publisher = {Gauthier-Villars},
title = {From a kinetic equation to a diffusion under an anomalous scaling},
url = {http://eudml.org/doc/272059},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Basile, Giada
TI - From a kinetic equation to a diffusion under an anomalous scaling
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1301
EP - 1322
AB - A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process $(K(t),i(t),Y(t))$ on $(\mathbb {T} ^{2}\times \lbrace 1,2\rbrace \times \mathbb {R} ^{2})$, where $\mathbb {T} ^{2}$ is the two-dimensional torus. Here $(K(t),i(t))$ is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. $Y(t)$ is an additive functional of $K$, defined as $\int _{0}^{t}v(K(s))\,\mathrm {d}s$, where $|v|\sim 1$ for small $k$. We prove that the rescaled process $(N\ln N)^{-1/2}Y(Nt)$ converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.
LA - eng
KW - anomalous thermal conductivity; kinetic limit; invariance principle
UR - http://eudml.org/doc/272059
ER -
References
top- [1] O. Aalen. Weak convergence of stochastic integrals related to counting processes. Z. Wahrsch. Verw. Gebiete38 (1977) 261–277. Zbl0339.60054MR448552
- [2] K. Aoki, J. Lukkarinen and H. Spohn. Energy transport in weakly anharmonic chain. J. Stat. Phys.124 (2006) 1105–1129. Zbl1135.82326MR2265846
- [3] G. Basile and A. Bovier. Convergence of a kinetic equation to a fractional diffusion equation. Markov Process. Related Fields16 (2010) 15–44. Zbl1198.82052MR2664334
- [4] G. Basile, C. Bernardin and S. Olla. Thermal conductivity for a momentum conserving model. Comm. Math. Phys. 287 (1) (2009) 67–98. Zbl1178.82070MR2480742
- [5] G. Basile, S. Olla and H. Spohn. Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195 (1) (2009) 171–203. Zbl1187.82017MR2564472
- [6] L. Bertini and B. Zegarlinsky. Coercive inequalities for Kawasaki dynamics. The product case. Markov Process. Related Fields 5 (1999) 125–162. Zbl0934.60096MR1762171
- [7] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley-Interscience, New York, 1999. Zbl0172.21201MR1700749
- [8] A. Dhar. Heat transport in low-dimensional systems. Adv. Phys. 57 (2008) 457–537. DOI:10.1080/00018730802538522.
- [9] R. Durrett and S. Resnick. Functional limit theorems for dependent variables. Ann. Probab.6 (1978) 829–849. Zbl0398.60024MR503954
- [10] A. Dvoretzky. Central limit theorems for dependent random variables. In Actes, Congrès int. Math. Tome 2 565–570. Gauthier-Villars, Paris, 1970. Zbl0254.60014MR420787
- [11] A. Dvoretzky. Asymptotic normality for sums of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Statist. Probability 513–535. Univ. California Press, Berkeley, 1972. Zbl0256.60009MR415728
- [12] D. Freedman. Brownian Motion and Diffusion. Holden-Day, San Francisco, 1971. Zbl0231.60072MR297016
- [13] D. Freedman. On tail probabilities for martingales. Ann. Probab.3 (1975) 100–118. Zbl0313.60037MR380971
- [14] B. V. Gnedenko and A. N. Kolmogorov. Predel’nye raspredeleniya dlya summ nezavisimyh slučaĭnyh veličin. (Russian) [Limit Distributions for Sums of Independent Random Variables]. Gosudarstv. Izdat. Tehn.–Teor. Lit., Moscow–Leningrad, 1949. MR41377
- [15] M. Jara, T. Komorowski and S. Olla. Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19 (6) (2009) 2270–2300. Zbl1232.60018MR2588245
- [16] S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau and A. A. Balandin. Dimensional crossover of thermal transport in few-layer graphene materials. Nature Materials9 (2010) 555–558.
- [17] I. S. Helland. Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist.9 (1982) 79–94. Zbl0486.60023MR668684
- [18] R. Lefevere and A. Schenkel. Normal heat conductivity in a strongly pinned chain of anharmonic oscillators. J. Stat. Mech. 2006 (2006) L02001. DOI:10.1088/1742-5468/2006/02/L02001.
- [19] S. Lepri, R. Livi and A. Politi. Thermal conduction in classical low-dimensional lattice. Phys. Rep.377 (2003) 1–80. MR1978992
- [20] T. M. Liggett. rates of convergence for attractive reversible nearest particle systems. Ann. Probab.19 (1991) 935–959. Zbl0737.60092MR1112402
- [21] J. Lukkarinen and H. Spohn. Kinetic limit for wave propagation in a random medium. Arch. Ration. Mech. Anal.183 (2007) 93–162. Zbl1176.60053MR2259341
- [22] J. Lukkarinen and H. Spohn. Anomalous energy transport in the FPU- chain. Comm. Pure Appl. Math.61 (2008) 1753–1789. Zbl1214.82057MR2456185
- [23] D. L. McLeish. Dependent central limit theorems and invariance principles. Ann. Probab. 2 (4) (1974) 620–628. Zbl0287.60025MR358933
- [24] A. Mellet, S. Mischler and C. Mouhot. Fractional diffusion limit for collitional kinetic equations. Arch. Ration. Mech. Anal. 199 (2) (2011) 493–525. Zbl1294.82033MR2763032
- [25] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability, 2nd edition. Cambridge Univ. Press, Cambridge, 2009. Zbl1165.60001MR2509253
- [26] R. E. Peierls. Zur kinetischen Theorie der Waermeleitung in Kristallen. Ann. Phys.3 (1929) 1055–1101. Zbl55.0547.01JFM55.0547.01
- [27] A. Pereverzev. Fermi–Pasta–Ulam lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68 (2003) 056124. MR2060102
- [28] M. Röckner and F.-Y. Wang. Weak Poincaré inequalities and -convergence rates of Markov semigroups. J. Funct. Anal.185 (2001) 564–603. Zbl1009.47028MR1856277
- [29] S. J. Sepanski. Some invariance principles for random vectors in the generalized domain of attraction of the multivariate normal law. J. Theoret. Probab. 10 (4) (1997) 153–1063. Zbl0897.60039MR1481659
- [30] H. Spohn. The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124 (2–4) (2006) 1041–1104. Zbl1106.82033MR2264633
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.