From a kinetic equation to a diffusion under an anomalous scaling

Giada Basile

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 4, page 1301-1322
  • ISSN: 0246-0203

Abstract

top
A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process ( K ( t ) , i ( t ) , Y ( t ) ) on ( 𝕋 2 × { 1 , 2 } × 2 ) , where 𝕋 2 is the two-dimensional torus. Here ( K ( t ) , i ( t ) ) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. Y ( t ) is an additive functional of K , defined as 0 t v ( K ( s ) ) d s , where | v | 1 for small k . We prove that the rescaled process ( N ln N ) - 1 / 2 Y ( N t ) converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.

How to cite

top

Basile, Giada. "From a kinetic equation to a diffusion under an anomalous scaling." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1301-1322. <http://eudml.org/doc/272059>.

@article{Basile2014,
abstract = {A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process $(K(t),i(t),Y(t))$ on $(\mathbb \{T\} ^\{2\}\times \lbrace 1,2\rbrace \times \mathbb \{R\} ^\{2\})$, where $\mathbb \{T\} ^\{2\}$ is the two-dimensional torus. Here $(K(t),i(t))$ is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. $Y(t)$ is an additive functional of $K$, defined as $\int _\{0\}^\{t\}v(K(s))\,\mathrm \{d\}s$, where $|v|\sim 1$ for small $k$. We prove that the rescaled process $(N\ln N)^\{-1/2\}Y(Nt)$ converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.},
author = {Basile, Giada},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {anomalous thermal conductivity; kinetic limit; invariance principle},
language = {eng},
number = {4},
pages = {1301-1322},
publisher = {Gauthier-Villars},
title = {From a kinetic equation to a diffusion under an anomalous scaling},
url = {http://eudml.org/doc/272059},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Basile, Giada
TI - From a kinetic equation to a diffusion under an anomalous scaling
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1301
EP - 1322
AB - A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process $(K(t),i(t),Y(t))$ on $(\mathbb {T} ^{2}\times \lbrace 1,2\rbrace \times \mathbb {R} ^{2})$, where $\mathbb {T} ^{2}$ is the two-dimensional torus. Here $(K(t),i(t))$ is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. $Y(t)$ is an additive functional of $K$, defined as $\int _{0}^{t}v(K(s))\,\mathrm {d}s$, where $|v|\sim 1$ for small $k$. We prove that the rescaled process $(N\ln N)^{-1/2}Y(Nt)$ converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.
LA - eng
KW - anomalous thermal conductivity; kinetic limit; invariance principle
UR - http://eudml.org/doc/272059
ER -

References

top
  1. [1] O. Aalen. Weak convergence of stochastic integrals related to counting processes. Z. Wahrsch. Verw. Gebiete38 (1977) 261–277. Zbl0339.60054MR448552
  2. [2] K. Aoki, J. Lukkarinen and H. Spohn. Energy transport in weakly anharmonic chain. J. Stat. Phys.124 (2006) 1105–1129. Zbl1135.82326MR2265846
  3. [3] G. Basile and A. Bovier. Convergence of a kinetic equation to a fractional diffusion equation. Markov Process. Related Fields16 (2010) 15–44. Zbl1198.82052MR2664334
  4. [4] G. Basile, C. Bernardin and S. Olla. Thermal conductivity for a momentum conserving model. Comm. Math. Phys. 287 (1) (2009) 67–98. Zbl1178.82070MR2480742
  5. [5] G. Basile, S. Olla and H. Spohn. Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195 (1) (2009) 171–203. Zbl1187.82017MR2564472
  6. [6] L. Bertini and B. Zegarlinsky. Coercive inequalities for Kawasaki dynamics. The product case. Markov Process. Related Fields 5 (1999) 125–162. Zbl0934.60096MR1762171
  7. [7] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley-Interscience, New York, 1999. Zbl0172.21201MR1700749
  8. [8] A. Dhar. Heat transport in low-dimensional systems. Adv. Phys. 57 (2008) 457–537. DOI:10.1080/00018730802538522. 
  9. [9] R. Durrett and S. Resnick. Functional limit theorems for dependent variables. Ann. Probab.6 (1978) 829–849. Zbl0398.60024MR503954
  10. [10] A. Dvoretzky. Central limit theorems for dependent random variables. In Actes, Congrès int. Math. Tome 2 565–570. Gauthier-Villars, Paris, 1970. Zbl0254.60014MR420787
  11. [11] A. Dvoretzky. Asymptotic normality for sums of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Statist. Probability 513–535. Univ. California Press, Berkeley, 1972. Zbl0256.60009MR415728
  12. [12] D. Freedman. Brownian Motion and Diffusion. Holden-Day, San Francisco, 1971. Zbl0231.60072MR297016
  13. [13] D. Freedman. On tail probabilities for martingales. Ann. Probab.3 (1975) 100–118. Zbl0313.60037MR380971
  14. [14] B. V. Gnedenko and A. N. Kolmogorov. Predel’nye raspredeleniya dlya summ nezavisimyh slučaĭnyh veličin. (Russian) [Limit Distributions for Sums of Independent Random Variables]. Gosudarstv. Izdat. Tehn.–Teor. Lit., Moscow–Leningrad, 1949. MR41377
  15. [15] M. Jara, T. Komorowski and S. Olla. Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19 (6) (2009) 2270–2300. Zbl1232.60018MR2588245
  16. [16] S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau and A. A. Balandin. Dimensional crossover of thermal transport in few-layer graphene materials. Nature Materials9 (2010) 555–558. 
  17. [17] I. S. Helland. Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist.9 (1982) 79–94. Zbl0486.60023MR668684
  18. [18] R. Lefevere and A. Schenkel. Normal heat conductivity in a strongly pinned chain of anharmonic oscillators. J. Stat. Mech. 2006 (2006) L02001. DOI:10.1088/1742-5468/2006/02/L02001. 
  19. [19] S. Lepri, R. Livi and A. Politi. Thermal conduction in classical low-dimensional lattice. Phys. Rep.377 (2003) 1–80. MR1978992
  20. [20] T. M. Liggett. L 2 rates of convergence for attractive reversible nearest particle systems. Ann. Probab.19 (1991) 935–959. Zbl0737.60092MR1112402
  21. [21] J. Lukkarinen and H. Spohn. Kinetic limit for wave propagation in a random medium. Arch. Ration. Mech. Anal.183 (2007) 93–162. Zbl1176.60053MR2259341
  22. [22] J. Lukkarinen and H. Spohn. Anomalous energy transport in the FPU- β chain. Comm. Pure Appl. Math.61 (2008) 1753–1789. Zbl1214.82057MR2456185
  23. [23] D. L. McLeish. Dependent central limit theorems and invariance principles. Ann. Probab. 2 (4) (1974) 620–628. Zbl0287.60025MR358933
  24. [24] A. Mellet, S. Mischler and C. Mouhot. Fractional diffusion limit for collitional kinetic equations. Arch. Ration. Mech. Anal. 199 (2) (2011) 493–525. Zbl1294.82033MR2763032
  25. [25] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability, 2nd edition. Cambridge Univ. Press, Cambridge, 2009. Zbl1165.60001MR2509253
  26. [26] R. E. Peierls. Zur kinetischen Theorie der Waermeleitung in Kristallen. Ann. Phys.3 (1929) 1055–1101. Zbl55.0547.01JFM55.0547.01
  27. [27] A. Pereverzev. Fermi–Pasta–Ulam β lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68 (2003) 056124. MR2060102
  28. [28] M. Röckner and F.-Y. Wang. Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups. J. Funct. Anal.185 (2001) 564–603. Zbl1009.47028MR1856277
  29. [29] S. J. Sepanski. Some invariance principles for random vectors in the generalized domain of attraction of the multivariate normal law. J. Theoret. Probab. 10 (4) (1997) 153–1063. Zbl0897.60039MR1481659
  30. [30] H. Spohn. The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124 (2–4) (2006) 1041–1104. Zbl1106.82033MR2264633

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.