Stationary distributions for jump processes with memory
K. Burdzy; T. Kulczycki; R. L. Schilling
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 3, page 609-630
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBurdzy, K., Kulczycki, T., and Schilling, R. L.. "Stationary distributions for jump processes with memory." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 609-630. <http://eudml.org/doc/272069>.
@article{Burdzy2012,
abstract = {We analyze a jump processes $Z$ with a jump measure determined by a “memory” process $S$. The state space of $(Z,S)$ is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of $(Z,S)$ is the product of the uniform probability measure and a Gaussian distribution.},
author = {Burdzy, K., Kulczycki, T., Schilling, R. L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stationary distribution; stable Lévy process; process with memory},
language = {eng},
number = {3},
pages = {609-630},
publisher = {Gauthier-Villars},
title = {Stationary distributions for jump processes with memory},
url = {http://eudml.org/doc/272069},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Burdzy, K.
AU - Kulczycki, T.
AU - Schilling, R. L.
TI - Stationary distributions for jump processes with memory
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 609
EP - 630
AB - We analyze a jump processes $Z$ with a jump measure determined by a “memory” process $S$. The state space of $(Z,S)$ is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of $(Z,S)$ is the product of the uniform probability measure and a Gaussian distribution.
LA - eng
KW - stationary distribution; stable Lévy process; process with memory
UR - http://eudml.org/doc/272069
ER -
References
top- [1] M. Barlow, A. Grigor’yan and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math.626 (2009) 135–157. Zbl1158.60039MR2492992
- [2] R. Bass, K. Burdzy, Z. Chen and M. Hairer. Stationary distributions for diffusions with inert drift. Probab. Theory Related Fields146 (2010) 1–47. Zbl1210.60058MR2550357
- [3] K. Burdzy, T. Kulczycki and R. Schilling. Stationary distributions for jump processes with inert drift. Preprint, 2010. Available at arXiv:1009.2347. Zbl1291.60170
- [4] K. Burdzy and D. White. A Gaussian oscillator. Electron. Commun. Probab.9 (2004) 92–95. Zbl1060.60086MR2108855
- [5] K. Burdzy and D. White. Markov processes with product-form stationary distribution. Electron. Commun. Probab.13 (2008) 614–627. Zbl1189.60139MR2461535
- [6] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986. Zbl1089.60005MR838085
- [7] N. Ikeda, N. Nagasawa and S. Watanabe. A construction of Markov processes by piecing out. Proc. Japan Acad. Ser. A Math. Sci.42 (1966) 370–375. Zbl0178.53401MR202197
- [8] P.-A. Meyer. Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann. Inst. Fourier (Grenoble) 25 (1975) 464–497. Zbl0304.60041MR415784
- [9] Ya. G. Sinai. Topics in Ergodic Theory. Princeton Univ. Press, Princeton, NJ, 1994. Zbl0805.58005MR1258087
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.