Invariance principle for Mott variable range hopping and other walks on point processes

P. Caputo; A. Faggionato; T. Prescott

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 3, page 654-697
  • ISSN: 0246-0203

Abstract

top
We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the α -power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case α = 1 corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.

How to cite

top

Caputo, P., Faggionato, A., and Prescott, T.. "Invariance principle for Mott variable range hopping and other walks on point processes." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 654-697. <http://eudml.org/doc/272074>.

@article{Caputo2013,
abstract = {We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the $\alpha $-power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case $\alpha =1$ corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.},
author = {Caputo, P., Faggionato, A., Prescott, T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk in random environment; Poisson point process; percolation; stochastic domination; invariance principle; corrector},
language = {eng},
number = {3},
pages = {654-697},
publisher = {Gauthier-Villars},
title = {Invariance principle for Mott variable range hopping and other walks on point processes},
url = {http://eudml.org/doc/272074},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Caputo, P.
AU - Faggionato, A.
AU - Prescott, T.
TI - Invariance principle for Mott variable range hopping and other walks on point processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 654
EP - 697
AB - We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the $\alpha $-power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case $\alpha =1$ corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.
LA - eng
KW - random walk in random environment; Poisson point process; percolation; stochastic domination; invariance principle; corrector
UR - http://eudml.org/doc/272074
ER -

References

top
  1. [1] V. Ambegoakar, B. Halperin and J. S. Langer. Hopping conductivity in disordered systems. Phys. Rev. B4 (1971) 2612–2620. 
  2. [2] A. Miller and E. Abrahams. Impurity conduction at low concentrations. Phys. Rev.120 (1960) 745–755. Zbl0093.22403
  3. [3] P. Antal and A. Pisztora. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab.24 (1996) 1036–1048. Zbl0871.60089MR1404543
  4. [4] N. W. Ashcroft and N. D. Mermin. Solid State Phyisics. Saunders College, Philadelphia, 1976. 
  5. [5] M. T. Barlow. Random walks on supercritical percolation clusters. Ann. Probab. 32 (4) (2004) 3024–3084. Zbl1067.60101MR2094438
  6. [6] M. T. Barlow and H.-D. Deuschel. Invariance principle for the random conductance model with unbounded conductances. Ann. Probab.38 (2010) 234–276. Zbl1189.60187MR2599199
  7. [7] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (1–2) (2007) 83–120. Zbl1107.60066MR2278453
  8. [8] N. Berger, M. Biskup, C. E. Hoffman and G. Kozma. Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat.274 (2008) 374–392. Zbl1187.60034MR2446329
  9. [9] M. Biskup and T. Prescott. Functional CLT for random walk among bounded random conductances. Electron. J. Probab.12 (2007) 1323–1348. Zbl1127.60093MR2354160
  10. [10] D. Boivin. Weak convergence for reversible random walks in a random environment. Ann. Probab.21 (1993) 1427–1440. Zbl0783.60067MR1235423
  11. [11] D. Boivin and J. Depauw. Spectral homogenization of reversible random walks on d in a random environment. Stochastic Process. Appl.104 (2003) 29–56. Zbl1075.35507MR1956471
  12. [12] P. Caputo and A. Faggionato. Isoperimetric inequalities and mixing time for a random walk on a random point process. Ann. Appl. Probab.17 (2007) 1707–1744. Zbl1141.60059MR2358639
  13. [13] P. Caputo and A. Faggionato. Diffusivity in one-dimensional generalized Mott variable-range hopping models. Ann. Appl. Probab. 19 (4) (2009) 1459–1494. Zbl1173.60032MR2538077
  14. [14] P. Caputo, A. Faggionato and A. Gaudilliere. Recurrence and transience for long-range reversible random walks on a random point process. Electron. J. Probab.14 (2009) 2580–2616. Zbl1191.60120MR2570012
  15. [15] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer, New York, 1988. Zbl1026.60061MR950166
  16. [16] A. De Masi, P. A. Ferrari, S. Goldstein and W. D. Wick. Invariance principle for reversible Markov processes with applications to random motions in random environments. J. Stat. Phys.55 (1989) 787–855. Zbl0713.60041MR1003538
  17. [17] R. Durrett. Probability: Theory and Examples, 3rd edition. Thomson, Cambridge, 2005. Zbl1202.60001MR1068527
  18. [18] A. Faggionato and P. Mathieu. Mott law for Mott variable–range random walk. Comm. Math. Phys. 281 (1) (2008) 263–286. Zbl1162.60025MR2403611
  19. [19] A. Faggionato, H. Schulz-Baldes and D. Spehner. Mott law as lower bound for a random walk in a random environment. Comm. Math. Phys.263 (2006) 21–64. Zbl1153.82007MR2207323
  20. [20] L. R. G. Fontes and P. Mathieu. On symmetric random walks with random conductances on Z d . Probab. Theory Related Fields134 (2006) 565–602. Zbl1086.60066MR2214905
  21. [21] G. Grimmett. Percolation, 2nd edition. Grundlehren 321. Springer, Berlin, 1999. MR1707339
  22. [22] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible Markov process and applications to simple exclusion. Comm. Math. Phys.104 (1986) 1–19. Zbl0588.60058MR834478
  23. [23] S. M. Kozlov. The method of averaging and walks in inhomogeneous environments. Russian Math. Surveys 40 (2) (1985) 73–145. Zbl0615.60063MR786087
  24. [24] T. M. Liggett, R. H. Schonmann and A. M. Stacey. Domination by product measures. Ann. Probab.25 (1997) 71–95. Zbl0882.60046MR1428500
  25. [25] P. Mathieu. Quenched invariance principles for random walks with random conductances. J. Stat. Phys.130 (2008) 1025–1046. Zbl1214.82044MR2384074
  26. [26] P. Mathieu and A. Piatniski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.463 (2007) 2287–2307. Zbl1131.82012MR2345229
  27. [27] B. Morris and Y. Peres. Evolving sets, mixing and heat kernel bounds. Probab. Theory Related Fields133 (2005) 245–266. Zbl1080.60071MR2198701
  28. [28] N. F. Mott. Conduction in glasses containing transition metal ions. J. Non-Crystal. Solids 1 (1968) 1. 
  29. [29] N. F. Mott. Conduction in non-crystalline materials. Phil. Mag. 19 (1969) 835. 
  30. [30] N. F. Mott. Electrons in glass. In Nobel Lectures, Physics 1971–1980. World Scientific, Singapore, 1992. 
  31. [31] N. F. Mott and E. A. Davis. Electronic Processes in Non-Crystaline Materials. Oxford Univ. Press, Oxford, 1979. Zbl0024.38001
  32. [32] V. Sidoravicius and A. S. Sznitman. Quenched invariance principles for walks on clusters of percolations or among random conductances. Probab. Theory Related Fields 129 (2) (2004) 219–244. Zbl1070.60090MR2063376
  33. [33] B. Shklovskii and A. L. Efros. Electronic Properties of Doped Semiconductors. Springer, Berlin, 1984. 
  34. [34] H. Spohn. Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. Zbl0742.76002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.