Anomalous heat-kernel decay for random walk among bounded random conductances
N. Berger; M. Biskup; C. E. Hoffman; G. Kozma
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 2, page 374-392
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Antal and A. Pisztora. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996) 1036–1048. Zbl0871.60089MR1404543
- [2] M. T. Barlow. Random walks on supercritical percolation clusters. Ann. Probab. 32 (2004) 3024–3084. Zbl1067.60101MR2094438
- [3] I. Benjamini and E. Mossel. On the mixing time of a simple random walk on the super critical percolation cluster. Probab. Theory Related Fields 125 (2003) 408–420. Zbl1020.60037MR1967022
- [4] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83–120. Zbl1107.60066MR2278453
- [5] M. Biskup and T. Prescott. Functional CLT for random walk among bounded conductances. Electron. J. Probab. 12 (2007) 1323–1348. Zbl1127.60093MR2354160
- [6] E. A. Carlen, S. Kusuoka and D. W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245–287. Zbl0634.60066MR898496
- [7] T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 15 (1999) 181–232. Zbl0922.60060MR1681641
- [8] A. De Masi, P. A. Ferrari, S. Goldstein and W. D. Wick. Invariance principle for reversible Markov processes with application to diffusion in the percolation regime. In Particle Systems, Random Media and Large Deviations (Brunswick, Maine) 71–85. Contemp. Math. 41. Amer. Math. Soc., Providence, RI, 1985. Zbl0571.60044MR814703
- [9] A. De Masi, P. A. Ferrari, S. Goldstein and W. D. Wick. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Statist. Phys. 55 (1989) 787–855. Zbl0713.60041MR1003538
- [10] L. R. G. Fontes and P. Mathieu. On symmetric random walks with random conductances on ℤd. Probab. Theory Related Fields 134 (2006) 565–602. Zbl1086.60066MR2214905
- [11] S. Goel, R. Montenegro and P. Tetali. Mixing time bounds via the spectral profile. Electron. J. Probab. 11 (2006) 1–26. Zbl1109.60061MR2199053
- [12] A. Grigor’yan. Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana 10 (1994) 395–452. Zbl0810.58040MR1286481
- [13] G. R. Grimmett. Percolation, 2nd edition. Springer, Berlin, 1999. MR1707339
- [14] G. R. Grimmett, H. Kesten and Y. Zhang. Random walk on the infinite cluster of the percolation model. Probab. Theory Related Fields 96 (1993) 33–44. Zbl0791.60095MR1222363
- [15] D. Heicklen and C. Hoffman. Return probabilities of a simple random walk on percolation clusters. Electron. J. Probab. 10 (2005) 250–302 (electronic). Zbl1070.60067MR2120245
- [16] C. Kipnis and S. R. S. Varadhan. A central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104 (1986) 1–19. Zbl0588.60058MR834478
- [17] B. Morris and Y. Peres. Evolving sets, mixing and heat kernel bounds. Probab. Theory Related Fields 133 (2005) 245–266. Zbl1080.60071MR2198701
- [18] P. Mathieu. Quenched invariance principles for random walks with random conductances. J. Statist. Phys. To appear. Zbl1214.82044MR2384074
- [19] P. Mathieu and A. L. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2287–2307. Zbl1131.82012MR2345229
- [20] P. Mathieu and E. Remy. Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004) 100–128. Zbl1078.60085MR2040777
- [21] G. Pete. A note on percolation on ℤd: Isoperimetric profile via exponential cluster repulsion. Preprint, 2007. MR2415145
- [22] C. Rau. Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation, Bull. Soc. Math. France. To appear. Zbl1156.60074MR2430203
- [23] V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219–244. Zbl1070.60090MR2063376
- [24] N. T. Varopoulos. Isoperimetric inequalities and Markov chains. J. Funct. Anal. 63 (1985) 215–239. Zbl0573.60059MR803093