The critical barrier for the survival of branching random walk with absorption
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 4, page 989-1009
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Addario-Berry and N. Broutin. Total progeny in killed branching random walk. Probab. Theory Related Fields151 (2011) 265–295. Zbl1230.60091
- [2] E. Aïdékon. Tail asymptotics for the total progeny of the critical killed branching random walk. Electron. Commun. Probab.15 (2010) 522–533. Zbl1226.60117
- [3] E. Aïdékon, Y. Hu and O. Zindy. The precise tail behavior of the total progeny of a killed branching random walk. Preprint, 2011. Available at arXiv:1102.5536 [math.PR]. Zbl1288.60105
- [4] E. Aïdékon and B. Jaffuel. Survival of branching random walks with absorption. Stochastic Process. Appl.121 (2011) 1901–1937. Zbl1236.60080
- [5] V. I. Arnol’d. Ordinary Differential Equations. MIT Press, Cambridge, MA, 1973. Translated and edited by R. A. Silverman. Zbl0296.34001
- [6] J. D. Biggins and A. E. Kyprianou. Seneta–Heyde norming in the branching random walk. Ann. Probab.25 (1997) 337–360. Zbl0873.60062
- [7] J. D. Biggins, B. D. Lubachevsky, A. Shwartz and A. Weiss. A branching random walk with barrier. Ann. Appl. Probab.1 (1991) 573–581. Zbl0749.60076MR1129775
- [8] B. Derrida and D. Simon. The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. 78 (2007). Art. 60006, 6. Zbl1244.82071MR2366713
- [9] B. Derrida and D. Simon. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys.131 (2008) 203–233. Zbl1144.82321MR2386578
- [10] N. Gantert, Y. Hu and Z. Shi. Asymptotics for the survival probability in a killed branching random walk. Ann. Inst. H. Poincaré Probab. Stat.47 (2011) 111–129. Zbl1210.60093MR2779399
- [11] J. W. Harris and S. C. Harris. Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab.12 (2007) 81–92. Zbl1132.60059MR2300218
- [12] H. Kesten. Branching Brownian motion with absorption. Stochastic Processes Appl.7 (1978) 9–47. Zbl0383.60077MR494543
- [13] A. A. Mogul’skii. Small deviations in the space of trajectories. Theory Probab. Appl.19 (1975) 726–736. Zbl0326.60061
- [14] R. Pemantle. Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab.19 (2009) 1273–1291. Zbl1176.68093MR2538070