The critical barrier for the survival of branching random walk with absorption
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 4, page 989-1009
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJaffuel, Bruno. "The critical barrier for the survival of branching random walk with absorption." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 989-1009. <http://eudml.org/doc/272080>.
@article{Jaffuel2012,
abstract = {We study a branching random walk on $\mathbb \{R\}$ with an absorbing barrier. The position of the barrier depends on the generation. In each generation, only the individuals born below the barrier survive and reproduce. Given a reproduction law, Biggins et al. [Ann. Appl. Probab.1(1991) 573–581] determined whether a linear barrier allows the process to survive. In this paper, we refine their result: in the boundary case in which the speed of the barrier matches the speed of the minimal position of a particle in a given generation, we add a second order term $an^\{1/3\}$ to the position of the barrier for the $n$th generation and find an explicit critical value $a_\{c\}$ such that the process dies when $a<a_\{c\}$ and survives when $a>a_\{c\}$. We also obtain the rate of extinction when $a<a_\{c\}$ and a lower bound for the population when it survives.},
author = {Jaffuel, Bruno},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching random walk; survival probability; survival probability absorbing barrier},
language = {eng},
number = {4},
pages = {989-1009},
publisher = {Gauthier-Villars},
title = {The critical barrier for the survival of branching random walk with absorption},
url = {http://eudml.org/doc/272080},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Jaffuel, Bruno
TI - The critical barrier for the survival of branching random walk with absorption
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 989
EP - 1009
AB - We study a branching random walk on $\mathbb {R}$ with an absorbing barrier. The position of the barrier depends on the generation. In each generation, only the individuals born below the barrier survive and reproduce. Given a reproduction law, Biggins et al. [Ann. Appl. Probab.1(1991) 573–581] determined whether a linear barrier allows the process to survive. In this paper, we refine their result: in the boundary case in which the speed of the barrier matches the speed of the minimal position of a particle in a given generation, we add a second order term $an^{1/3}$ to the position of the barrier for the $n$th generation and find an explicit critical value $a_{c}$ such that the process dies when $a<a_{c}$ and survives when $a>a_{c}$. We also obtain the rate of extinction when $a<a_{c}$ and a lower bound for the population when it survives.
LA - eng
KW - branching random walk; survival probability; survival probability absorbing barrier
UR - http://eudml.org/doc/272080
ER -
References
top- [1] L. Addario-Berry and N. Broutin. Total progeny in killed branching random walk. Probab. Theory Related Fields151 (2011) 265–295. Zbl1230.60091
- [2] E. Aïdékon. Tail asymptotics for the total progeny of the critical killed branching random walk. Electron. Commun. Probab.15 (2010) 522–533. Zbl1226.60117
- [3] E. Aïdékon, Y. Hu and O. Zindy. The precise tail behavior of the total progeny of a killed branching random walk. Preprint, 2011. Available at arXiv:1102.5536 [math.PR]. Zbl1288.60105
- [4] E. Aïdékon and B. Jaffuel. Survival of branching random walks with absorption. Stochastic Process. Appl.121 (2011) 1901–1937. Zbl1236.60080
- [5] V. I. Arnol’d. Ordinary Differential Equations. MIT Press, Cambridge, MA, 1973. Translated and edited by R. A. Silverman. Zbl0296.34001
- [6] J. D. Biggins and A. E. Kyprianou. Seneta–Heyde norming in the branching random walk. Ann. Probab.25 (1997) 337–360. Zbl0873.60062
- [7] J. D. Biggins, B. D. Lubachevsky, A. Shwartz and A. Weiss. A branching random walk with barrier. Ann. Appl. Probab.1 (1991) 573–581. Zbl0749.60076MR1129775
- [8] B. Derrida and D. Simon. The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. 78 (2007). Art. 60006, 6. Zbl1244.82071MR2366713
- [9] B. Derrida and D. Simon. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys.131 (2008) 203–233. Zbl1144.82321MR2386578
- [10] N. Gantert, Y. Hu and Z. Shi. Asymptotics for the survival probability in a killed branching random walk. Ann. Inst. H. Poincaré Probab. Stat.47 (2011) 111–129. Zbl1210.60093MR2779399
- [11] J. W. Harris and S. C. Harris. Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab.12 (2007) 81–92. Zbl1132.60059MR2300218
- [12] H. Kesten. Branching Brownian motion with absorption. Stochastic Processes Appl.7 (1978) 9–47. Zbl0383.60077MR494543
- [13] A. A. Mogul’skii. Small deviations in the space of trajectories. Theory Probab. Appl.19 (1975) 726–736. Zbl0326.60061
- [14] R. Pemantle. Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab.19 (2009) 1273–1291. Zbl1176.68093MR2538070
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.