Asymptotics for the survival probability in a killed branching random walk

Nina Gantert; Yueyun Hu; Zhan Shi

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 1, page 111-129
  • ISSN: 0246-0203

Abstract

top
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we prove that when ε → 0, this probability decays like exp{−(β+o(1)) / ε1/2}, where β is a positive constant depending on the distribution of the branching random walk. In the special case of i.i.d. Bernoulli(p) random variables (with 0 < p < ½) assigned on a rooted binary tree, this answers an open question of Robin Pemantle (see Ann. Appl. Probab.19 (2009) 1273–1291).

How to cite

top

Gantert, Nina, Hu, Yueyun, and Shi, Zhan. "Asymptotics for the survival probability in a killed branching random walk." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 111-129. <http://eudml.org/doc/243873>.

@article{Gantert2011,
abstract = {Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we prove that when ε → 0, this probability decays like exp\{−(β+o(1)) / ε1/2\}, where β is a positive constant depending on the distribution of the branching random walk. In the special case of i.i.d. Bernoulli(p) random variables (with 0 &lt; p &lt; ½) assigned on a rooted binary tree, this answers an open question of Robin Pemantle (see Ann. Appl. Probab.19 (2009) 1273–1291).},
author = {Gantert, Nina, Hu, Yueyun, Shi, Zhan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching random walk; survival probability; maximal displacement},
language = {eng},
number = {1},
pages = {111-129},
publisher = {Gauthier-Villars},
title = {Asymptotics for the survival probability in a killed branching random walk},
url = {http://eudml.org/doc/243873},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Gantert, Nina
AU - Hu, Yueyun
AU - Shi, Zhan
TI - Asymptotics for the survival probability in a killed branching random walk
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 111
EP - 129
AB - Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we prove that when ε → 0, this probability decays like exp{−(β+o(1)) / ε1/2}, where β is a positive constant depending on the distribution of the branching random walk. In the special case of i.i.d. Bernoulli(p) random variables (with 0 &lt; p &lt; ½) assigned on a rooted binary tree, this answers an open question of Robin Pemantle (see Ann. Appl. Probab.19 (2009) 1273–1291).
LA - eng
KW - branching random walk; survival probability; maximal displacement
UR - http://eudml.org/doc/243873
ER -

References

top
  1. [1] D. J. Aldous. A Metropolis-type optimization algorithm on the infinite tree. Algorithmica 22 (1998) 388–412. Zbl0936.68118MR1701620
  2. [2] J. D. Biggins. The first- and last-birth problems for a multitype age-dependent branching process. Adv. in Appl. Probab. 8 (1976) 446–459. Zbl0339.60074MR420890
  3. [3] J. D. Biggins and A. E. Kyprianou. Fixed points of the smoothing transform: The boundary case. Electron. J. Probab. 10 (2005) 609–631, Paper 17. Zbl1110.60081MR2147319
  4. [4] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. Zbl0944.60003MR233396
  5. [5] É. Brunet and B. Derrida. Shift in the velocity of a front due to a cutoff. Phys. Rev. E 56 (1997) 2597–2604. 
  6. [6] B. Derrida and D. Simon. The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. 78 (2007), Paper 60006. Zbl1244.82071MR2366713
  7. [7] B. Derrida and D. Simon. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys. 131 (2008) 203–233. Zbl1144.82321MR2386578
  8. [8] J. M. Hammersley. Postulates for subadditive processes. Ann. Probab. 2 (1974) 652–680. Zbl0303.60044MR370721
  9. [9] Y. Hu and Z. Shi. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37 (2009) 742–789. Zbl1169.60021MR2510023
  10. [10] K. Itô and H. P. McKean Jr.Diffusion Processes and Their Sample Paths. Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125. Springer, Berlin, 1974. Zbl0285.60063MR345224
  11. [11] B. Jaffuel. The critical barrier for the survival of the branching random walk with absorption, 2009. Available at ArXiv math.PR/0911.2227. 
  12. [12] J.-P. Kahane and J. Peyrière. Sur certaines martingales de Mandelbrot. Adv. Math. 22 (1976) 131–145. Zbl0349.60051MR431355
  13. [13] H. Kesten. Branching Brownian motion with absorption. Stochastic Process. Appl. 7 (1978) 9–47. Zbl0383.60077MR494543
  14. [14] J. F. C. Kingman. The first birth problem for an age-dependent branching process. Ann. Probab. 3 (1975) 790–801. Zbl0325.60079MR400438
  15. [15] R. Lyons. A simple path to Biggins’ martingale convergence for branching random walk. In Classical and Modern Branching Processes 217–221. K. B. Athreya and P. Jagers (Eds). IMA Volumes in Mathematics and Its Applications 84. Springer, New York, 1997. Zbl0897.60086MR1601749
  16. [16] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of LlogL criteria for mean behavior of branching processes. Ann. Probab. 23 (1995) 1125–1138. Zbl0840.60077MR1349164
  17. [17] C. McDiarmid. Minimal positions in a branching random walk. Ann. Appl. Probab. 5 (1995) 128–139. Zbl0836.60089MR1325045
  18. [18] A. A. Mogulskii. Small deviations in the space of trajectories. Theory Probab. Appl. 19 (1974) 726–736. Zbl0326.60061MR370701
  19. [19] R. Pemantle. Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab. 19 (2009) 1273–1291. Zbl1176.68093MR2538070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.