Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes
Romain Azaïs; François Dufour; Anne Gégout-Petit
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 4, page 1204-1231
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAzaïs, Romain, Dufour, François, and Gégout-Petit, Anne. "Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1204-1231. <http://eudml.org/doc/272081>.
@article{Azaïs2013,
abstract = {This paper is devoted to the nonparametric estimation of the jump rate and the cumulative rate for a general class of non-homogeneous marked renewal processes, defined on a separable metric space. In our framework, the estimation needs only one observation of the process within a long time. Our approach is based on a generalization of the multiplicative intensity model, introduced by Aalen in the seventies. We provide consistent estimators of these two functions, under some assumptions related to the ergodicity of an embedded chain and the characteristics of the process. The paper is illustrated by a numerical example.},
author = {Azaïs, Romain, Dufour, François, Gégout-Petit, Anne},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {non-homogeneous marked renewal process; nonparametric estimation; jump rate estimation; Nelson–Aalen estimator; asymptotic consistency; ergodicity of Markov chains; Nelson-Aalen estimator},
language = {eng},
number = {4},
pages = {1204-1231},
publisher = {Gauthier-Villars},
title = {Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes},
url = {http://eudml.org/doc/272081},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Azaïs, Romain
AU - Dufour, François
AU - Gégout-Petit, Anne
TI - Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1204
EP - 1231
AB - This paper is devoted to the nonparametric estimation of the jump rate and the cumulative rate for a general class of non-homogeneous marked renewal processes, defined on a separable metric space. In our framework, the estimation needs only one observation of the process within a long time. Our approach is based on a generalization of the multiplicative intensity model, introduced by Aalen in the seventies. We provide consistent estimators of these two functions, under some assumptions related to the ergodicity of an embedded chain and the characteristics of the process. The paper is illustrated by a numerical example.
LA - eng
KW - non-homogeneous marked renewal process; nonparametric estimation; jump rate estimation; Nelson–Aalen estimator; asymptotic consistency; ergodicity of Markov chains; Nelson-Aalen estimator
UR - http://eudml.org/doc/272081
ER -
References
top- [1] O. O. Aalen. Statistical inference for a family of counting processes. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Univ. of California, Berkeley, 1975. Zbl0389.62025MR2625917
- [2] O. O. Aalen. Weak convergence of stochastic integrals related to counting processes. Z. Wahrsch. Verw. Gebiete38 (1977) 261–277. Zbl0339.60054MR448552
- [3] O. O. Aalen. Nonparametric inference for a family of counting processes. Ann. Statist.6 (1978) 701–726. Zbl0389.62025MR491547
- [4] O. O. Aalen, P. K. Andersen, Ø. Borgan, R. D. Gill and N. Keiding. History of applications of martingales in survival analysis. J. Électron. Hist. Probab. Stat. 5 (2009) 28. Zbl1170.01364MR2520671
- [5] P. K. Andersen, Ø. Borgan, R. D. Gill and N. Keiding. Statistical Models Based on Counting Processes. Springer, New York, 1993. Zbl0769.62061MR1198884
- [6] R. Azaïs, F. Dufour and A. Gégout-Petit. Nonparametric estimation of the conditional distribution of the inter-jumping times for piecewise-deterministic Markov processes. Preprint, 2012. Available at arXiv:1202.2212v2. Zbl1305.60066
- [7] M. Benaïm and N. El Karoui. Promenade aléatoire, Chaînes de Markov et simulations; martingales et stratégie. Les éd. de l’École polytechnique, Palaiseau, Paris, 2004.
- [8] J. Beran. Nonparametric regression with randomly censored survival data. Technical report, Dept. Statist., Univ. California, Berkeley, 1981.
- [9] K. L. Chung. A Course in Probability Theory, 2nd edition. Probability and Mathematical Statistics 21. Academic Press, New York, 1974. Zbl0345.60003MR346858
- [10] F. Comte, S. Gaïffas and A. Guilloux. Adaptive estimation of the conditional intensity of marker-dependent counting processes. Ann. Inst. H. Poincaré Probab. Statist.47 (2011) 1171–1196. Zbl1271.62222MR2884230
- [11] D. R. Cox. Regression models and life-tables. J. Roy. Statist. Soc. Ser. B34 (1972) 187–220. Zbl0243.62041MR341758
- [12] D. M. Dabrowska. Nonparametric regression with censored survival time data. Scand. J. Statist.14 (1987) 181–197. Zbl0641.62024MR932943
- [13] M. H. A. Davis. Markov Models and Optimization. Monographs on Statistics and Applied Probability 49. Chapman & Hall, London, 1993.
- [14] O. Hernández-Lerma and J. B. Lasserre. Further criteria for positive Harris recurrence of Markov chains. Proc. Amer. Math. Soc.129 (2001) 1521–1524. Zbl0970.60078MR1712909
- [15] O. Hernández-Lerma and J. B. Lasserre. Markov Chains and Invariant Probabilities. Progress in Mathematics 211. Birkhäuser, Basel, 2003. MR1974383
- [16] M. Jacobsen. Statistical Analysis of Counting Processes. Lecture Notes in Statistics 12. Springer, New York, 1982. Zbl0518.60065MR676128
- [17] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer, New York, 2002. Zbl0996.60001MR1876169
- [18] A. Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer, London, 2008. Zbl1141.60001MR2372119
- [19] G. Li and H. Doss. An approach to nonparametric regression for life history data using local linear fitting. Ann. Statist.23 (1995) 787–823. Zbl0852.62037MR1345201
- [20] T. Martinussen and T. H. Scheike. Dynamic Regression Models for Survival Data. Statistics for Biology and Health. Springer, New York, 2006. Zbl1096.62119MR2214443
- [21] I. W. McKeague and K. J. Utikal. Inference for a nonlinear counting process regression model. Ann. Statist.18 (1990) 1172–1187. Zbl0721.62087MR1062704
- [22] S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability, 2nd edition. Cambridge Univ. Press, Cambridge, 2009. Zbl1165.60001MR2509253
- [23] H. Ramlau-Hansen. Smoothing counting process intensities by means of kernel functions. Ann. Statist.11 (1983) 453–466. Zbl0514.62050MR696058
- [24] W. Stute. Conditional empirical processes. Ann. Statist.14 (1986) 638–647. Zbl0594.62038MR840519
- [25] K. J. Utikal. Nonparametric inference for a doubly stochastic Poisson process. Stochastic Process. Appl.45 (1993) 331–349. Zbl0782.62050MR1208878
- [26] K. J. Utikal. Nonparametric inference for Markovian interval processes. Stochastic Process. Appl.67 (1997) 1–23. MR1445041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.