Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes

Romain Azaïs; François Dufour; Anne Gégout-Petit

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 4, page 1204-1231
  • ISSN: 0246-0203

Abstract

top
This paper is devoted to the nonparametric estimation of the jump rate and the cumulative rate for a general class of non-homogeneous marked renewal processes, defined on a separable metric space. In our framework, the estimation needs only one observation of the process within a long time. Our approach is based on a generalization of the multiplicative intensity model, introduced by Aalen in the seventies. We provide consistent estimators of these two functions, under some assumptions related to the ergodicity of an embedded chain and the characteristics of the process. The paper is illustrated by a numerical example.

How to cite

top

Azaïs, Romain, Dufour, François, and Gégout-Petit, Anne. "Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1204-1231. <http://eudml.org/doc/272081>.

@article{Azaïs2013,
abstract = {This paper is devoted to the nonparametric estimation of the jump rate and the cumulative rate for a general class of non-homogeneous marked renewal processes, defined on a separable metric space. In our framework, the estimation needs only one observation of the process within a long time. Our approach is based on a generalization of the multiplicative intensity model, introduced by Aalen in the seventies. We provide consistent estimators of these two functions, under some assumptions related to the ergodicity of an embedded chain and the characteristics of the process. The paper is illustrated by a numerical example.},
author = {Azaïs, Romain, Dufour, François, Gégout-Petit, Anne},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {non-homogeneous marked renewal process; nonparametric estimation; jump rate estimation; Nelson–Aalen estimator; asymptotic consistency; ergodicity of Markov chains; Nelson-Aalen estimator},
language = {eng},
number = {4},
pages = {1204-1231},
publisher = {Gauthier-Villars},
title = {Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes},
url = {http://eudml.org/doc/272081},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Azaïs, Romain
AU - Dufour, François
AU - Gégout-Petit, Anne
TI - Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1204
EP - 1231
AB - This paper is devoted to the nonparametric estimation of the jump rate and the cumulative rate for a general class of non-homogeneous marked renewal processes, defined on a separable metric space. In our framework, the estimation needs only one observation of the process within a long time. Our approach is based on a generalization of the multiplicative intensity model, introduced by Aalen in the seventies. We provide consistent estimators of these two functions, under some assumptions related to the ergodicity of an embedded chain and the characteristics of the process. The paper is illustrated by a numerical example.
LA - eng
KW - non-homogeneous marked renewal process; nonparametric estimation; jump rate estimation; Nelson–Aalen estimator; asymptotic consistency; ergodicity of Markov chains; Nelson-Aalen estimator
UR - http://eudml.org/doc/272081
ER -

References

top
  1. [1] O. O. Aalen. Statistical inference for a family of counting processes. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Univ. of California, Berkeley, 1975. Zbl0389.62025MR2625917
  2. [2] O. O. Aalen. Weak convergence of stochastic integrals related to counting processes. Z. Wahrsch. Verw. Gebiete38 (1977) 261–277. Zbl0339.60054MR448552
  3. [3] O. O. Aalen. Nonparametric inference for a family of counting processes. Ann. Statist.6 (1978) 701–726. Zbl0389.62025MR491547
  4. [4] O. O. Aalen, P. K. Andersen, Ø. Borgan, R. D. Gill and N. Keiding. History of applications of martingales in survival analysis. J. Électron. Hist. Probab. Stat. 5 (2009) 28. Zbl1170.01364MR2520671
  5. [5] P. K. Andersen, Ø. Borgan, R. D. Gill and N. Keiding. Statistical Models Based on Counting Processes. Springer, New York, 1993. Zbl0769.62061MR1198884
  6. [6] R. Azaïs, F. Dufour and A. Gégout-Petit. Nonparametric estimation of the conditional distribution of the inter-jumping times for piecewise-deterministic Markov processes. Preprint, 2012. Available at arXiv:1202.2212v2. Zbl1305.60066
  7. [7] M. Benaïm and N. El Karoui. Promenade aléatoire, Chaînes de Markov et simulations; martingales et stratégie. Les éd. de l’École polytechnique, Palaiseau, Paris, 2004. 
  8. [8] J. Beran. Nonparametric regression with randomly censored survival data. Technical report, Dept. Statist., Univ. California, Berkeley, 1981. 
  9. [9] K. L. Chung. A Course in Probability Theory, 2nd edition. Probability and Mathematical Statistics 21. Academic Press, New York, 1974. Zbl0345.60003MR346858
  10. [10] F. Comte, S. Gaïffas and A. Guilloux. Adaptive estimation of the conditional intensity of marker-dependent counting processes. Ann. Inst. H. Poincaré Probab. Statist.47 (2011) 1171–1196. Zbl1271.62222MR2884230
  11. [11] D. R. Cox. Regression models and life-tables. J. Roy. Statist. Soc. Ser. B34 (1972) 187–220. Zbl0243.62041MR341758
  12. [12] D. M. Dabrowska. Nonparametric regression with censored survival time data. Scand. J. Statist.14 (1987) 181–197. Zbl0641.62024MR932943
  13. [13] M. H. A. Davis. Markov Models and Optimization. Monographs on Statistics and Applied Probability 49. Chapman & Hall, London, 1993. 
  14. [14] O. Hernández-Lerma and J. B. Lasserre. Further criteria for positive Harris recurrence of Markov chains. Proc. Amer. Math. Soc.129 (2001) 1521–1524. Zbl0970.60078MR1712909
  15. [15] O. Hernández-Lerma and J. B. Lasserre. Markov Chains and Invariant Probabilities. Progress in Mathematics 211. Birkhäuser, Basel, 2003. MR1974383
  16. [16] M. Jacobsen. Statistical Analysis of Counting Processes. Lecture Notes in Statistics 12. Springer, New York, 1982. Zbl0518.60065MR676128
  17. [17] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer, New York, 2002. Zbl0996.60001MR1876169
  18. [18] A. Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer, London, 2008. Zbl1141.60001MR2372119
  19. [19] G. Li and H. Doss. An approach to nonparametric regression for life history data using local linear fitting. Ann. Statist.23 (1995) 787–823. Zbl0852.62037MR1345201
  20. [20] T. Martinussen and T. H. Scheike. Dynamic Regression Models for Survival Data. Statistics for Biology and Health. Springer, New York, 2006. Zbl1096.62119MR2214443
  21. [21] I. W. McKeague and K. J. Utikal. Inference for a nonlinear counting process regression model. Ann. Statist.18 (1990) 1172–1187. Zbl0721.62087MR1062704
  22. [22] S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability, 2nd edition. Cambridge Univ. Press, Cambridge, 2009. Zbl1165.60001MR2509253
  23. [23] H. Ramlau-Hansen. Smoothing counting process intensities by means of kernel functions. Ann. Statist.11 (1983) 453–466. Zbl0514.62050MR696058
  24. [24] W. Stute. Conditional empirical processes. Ann. Statist.14 (1986) 638–647. Zbl0594.62038MR840519
  25. [25] K. J. Utikal. Nonparametric inference for a doubly stochastic Poisson process. Stochastic Process. Appl.45 (1993) 331–349. Zbl0782.62050MR1208878
  26. [26] K. J. Utikal. Nonparametric inference for Markovian interval processes. Stochastic Process. Appl.67 (1997) 1–23. MR1445041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.