Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions

Fabrice Baudoin; Cheng Ouyang; Samy Tindel

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 1, page 111-135
  • ISSN: 0246-0203

Abstract

top
In this paper we study upper bounds for the density of solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H g t ; 1 / 3 . We show that under some geometric conditions, in the regular case H g t ; 1 / 2 , the density of the solution satisfies the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough case H g t ; 1 / 3 and under the same geometric conditions, we show that the density of the solution is smooth and admits an upper sub-Gaussian bound.

How to cite

top

Baudoin, Fabrice, Ouyang, Cheng, and Tindel, Samy. "Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 111-135. <http://eudml.org/doc/272082>.

@article{Baudoin2014,
abstract = {In this paper we study upper bounds for the density of solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter $H&gt;1/3$. We show that under some geometric conditions, in the regular case $H&gt;1/2$, the density of the solution satisfies the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough case $H&gt;1/3$ and under the same geometric conditions, we show that the density of the solution is smooth and admits an upper sub-Gaussian bound.},
author = {Baudoin, Fabrice, Ouyang, Cheng, Tindel, Samy},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {1},
pages = {111-135},
publisher = {Gauthier-Villars},
title = {Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions},
url = {http://eudml.org/doc/272082},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Baudoin, Fabrice
AU - Ouyang, Cheng
AU - Tindel, Samy
TI - Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 111
EP - 135
AB - In this paper we study upper bounds for the density of solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter $H&gt;1/3$. We show that under some geometric conditions, in the regular case $H&gt;1/2$, the density of the solution satisfies the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough case $H&gt;1/3$ and under the same geometric conditions, we show that the density of the solution is smooth and admits an upper sub-Gaussian bound.
LA - eng
UR - http://eudml.org/doc/272082
ER -

References

top
  1. [1] F. Baudoin and L. Coutin. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl.117 (2007) 550–574. Zbl1119.60043MR2320949
  2. [2] F. Baudoin and M. Hairer. A version of Hörmander’s theorem for the fractional Brownian motion. Probab. Theory Related Fields139 (2007) 373–395. Zbl1123.60038MR2322701
  3. [3] F. Baudoin and C. Ouyang. Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions. Stochastic. Process. Appl.121 (2011) 759–792. Zbl1222.60034MR2770906
  4. [4] F. Baudoin, E. Nualart, C. Ouyang and S. Tindel. Work in progress. Preprint, 2012. 
  5. [5] M. Besalú and D. Nualart. Estimates for the solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ( 1 3 , 1 2 ) . Stoch. Dyn.11 (2011) 243–263. Zbl1231.60049MR2836524
  6. [6] M. Capitaine, E. Hsu and M. Ledoux. Martingale representation and logarithmic Sobolev inequality. Electron. Com. Probab.2 (1997) 71–81. Zbl0890.60045MR1484557
  7. [7] T. Cass and P. Friz. Densities for rough differential equations under Hörmander condition. Ann. Math. To appear. Zbl1205.60105MR2680405
  8. [8] T. Cass, P. Friz and N. Victoir. Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Amer. Math. Soc.361 (2009) 3359–3371. Zbl1175.60034MR2485431
  9. [9] T. Cass, C. Litterer and T. Lyons. Integrability estimates for Gaussian rough differential equations. Arxiv preprint, 2011. Zbl1278.60091
  10. [10] A. Chronopoulou and S. Tindel. On inference for fractional differential equations. Arxiv preprint, 2011. Zbl1271.62197MR3029332
  11. [11] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields122 (2002) 108–140. Zbl1047.60029MR1883719
  12. [12] R. C. Dalang and E. Nualart. Potential theory for hyperbolic SPDEs. Ann. Probab. 32(3A) (2004) 2099–2148. Zbl1054.60066MR2073187
  13. [13] A. Davie. Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. Express. 2007 (2007) abm009. Zbl1163.34005MR2387018
  14. [14] A. Deya, A. Neuenkirch and S. Tindel. A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 48(2) (2012) 518–550. Zbl1260.60135MR2954265
  15. [15] P. Driscoll. Smoothness of density for the area process of fractional Brownian motion. Arxiv preprint, 2010. Zbl1268.60080
  16. [16] P. Friz and N. Victoir. Multidimensional Stochastic Processes Seen as Rough Paths. Cambridge Univ. Press, Cambridge, 2010. Zbl1193.60053MR2604669
  17. [17] M. Gubinelli. Controlling rough paths. J. Funct. Anal.216 (2004) 86–140. Zbl1058.60037MR2091358
  18. [18] M. Gubinelli and S. Tindel. Rough evolution equations. Ann. Probab.38 (2010) 1–75. Zbl1193.60070MR2599193
  19. [19] M. Hairer. Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab.33 (2005) 703–758. Zbl1071.60045MR2123208
  20. [20] M. Hairer and A. Ohashi. Ergodicity theory of SDEs with extrinsic memory. Ann. Probab.35 (2007) 1950–1977. Zbl1129.60052MR2349580
  21. [21] M. Hairer and N. S. Pillai. Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Preprint, 2011. Zbl1288.60068MR3112925
  22. [22] E. Hsu. Stochastic Analysis on Manifolds. Graduate Series in Mathematics 38. Amer. Math. Soc., Providence, RI, 2002. Zbl0994.58019MR1882015
  23. [23] Y. Hu and D. Nualart. Differential equations driven by Hölder continuous functions of order greater than 1 / 2 . Abel Symp.2 (2007) 349–413. Zbl1144.34038MR2397797
  24. [24] S. Kou and X. Sunney-Xie. Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 (2004) 18. 
  25. [25] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Amer. Math. Soc., Providence, RI, 2001. Zbl0995.60002MR1849347
  26. [26] T. Lyons and Z. Qian. System Control and Rough Paths. Oxford Univ. Press, Oxford, 2002. Zbl1029.93001MR2036784
  27. [27] A. Millet and M. Sanz-Solé. Large deviations for rough paths of the fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Stat.42 (2006) 245–271. Zbl1087.60035MR2199801
  28. [28] A. Neuenkirch, I. Nourdin, A. Rößler and S. Tindel. Trees and asymptotic developments for fractional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 157–174. Zbl1172.60017MR2500233
  29. [29] A. Neuenkirch, S. Tindel and J. Unterberger. Discretizing the Lévy area. Stochastic Process. Appl.120 (2010) 223–254. Zbl1185.60076MR2576888
  30. [30] D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer-Verlag, Berlin, 2006. Zbl0837.60050MR2200233
  31. [31] D. Nualart and A. Rǎşcanu. Differential equations driven by fractional Brownian motion. Collect. Math.53 (2002) 55–81. Zbl1018.60057
  32. [32] D. Nualart and B. Saussereau. Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl.119 (2009) 391–409. Zbl1169.60013MR2493996
  33. [33] J. Szymanski and M. Weiss. Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103 (2009) 3. 
  34. [34] V. Tejedor, O. Bénichou, R. Voituriez, R. Jungmann, F. Simmel, C. Selhuber-Unkel, L. Oddershede and R. Metzle. Quantitative analysis of single particle trajectories: Mean maximal excursion method. Biophysical J.98 (2010) 1364–1372. 
  35. [35] A. S. Üstünel. Analysis on Wiener space and applications. Arxiv preprint, 2010. 
  36. [36] M. Zähle. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields111 (1998) 333–374. Zbl0918.60037MR1640795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.