Large deviations for rough paths of the fractional brownian motion
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 2, page 245-271
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMillet, Annie, and Sanz-Solé, Marta. "Large deviations for rough paths of the fractional brownian motion." Annales de l'I.H.P. Probabilités et statistiques 42.2 (2006): 245-271. <http://eudml.org/doc/77896>.
@article{Millet2006,
author = {Millet, Annie, Sanz-Solé, Marta},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {geometric rough path; fractional Brownian motion; large deviation principle},
language = {eng},
number = {2},
pages = {245-271},
publisher = {Elsevier},
title = {Large deviations for rough paths of the fractional brownian motion},
url = {http://eudml.org/doc/77896},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Millet, Annie
AU - Sanz-Solé, Marta
TI - Large deviations for rough paths of the fractional brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 2
SP - 245
EP - 271
LA - eng
KW - geometric rough path; fractional Brownian motion; large deviation principle
UR - http://eudml.org/doc/77896
ER -
References
top- [1] E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab.29 (2) (2001) 766-801. Zbl1015.60047MR1849177
- [2] P. Carmona, L. Coutin, G. Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré39 (1) (2003) 27-68. Zbl1016.60043MR1959841
- [3] M. Capitaine, C. Donati-Martin, The Lévy area process for the free Brownian motion, J. Funct. Anal.179 (1) (2001) 153-169. Zbl0979.60044MR1807256
- [4] L. Coutin, Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields122 (2002) 108-140. Zbl1047.60029MR1883719
- [5] L. Decreusefond, S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Anal.10 (1999) 177-214. Zbl0924.60034MR1677455
- [6] L. Decreusefond, A Skorohod–Stratonovitch integral for the fractional Brownian motion, in: Stochastic Analysis and Related Topics, VII (Kusadasi, 1998), Progr. Probab., vol. 48, Birkhäuser Boston, Boston, 2001, pp. 177-198. Zbl0970.60059MR1915454
- [7] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Appl. Math., vol. 38, Springer-Verlag, 1998. Zbl0896.60013MR1619036
- [8] J.-D. Deuschel, D.W. Stroock, Large Deviations, Pure Appl. Math., vol. 137, Academic Press, 1989. Zbl0705.60029MR997938
- [9] P. Fritz, N. Victoir, Approximations of the Brownian rough path with applications to stochastic analysis, prepublication, arXiv, math.PR/0308238, Ann. Inst. H. Poincaré, in press. Zbl1080.60021
- [10] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, 1991. Zbl0748.60004MR1102015
- [11] M. Ledoux, T. Lyons, Z. Qian, Lévy area of Wiener processes in Banach spaces, Ann. Probab.30 (2) (2002) 546-578. Zbl1016.60071MR1905851
- [12] M. Ledoux, Z. Qian, T. Zhang, Large deviations and support theorem for diffusion processes via rough paths, Stochastic Proccess. Appl.102 (2002) 265-283. Zbl1075.60510MR1935127
- [13] A. Lejay, An introduction to rough paths, in: Séminaire de Probabilités XXXVII, Lecture Notes in Math., vol. 1832, Springer, Berlin, 2003, pp. 1-59. Zbl1041.60051MR2053040
- [14] T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana14 (1998) 215-310. Zbl0923.34056MR1654527
- [15] T. Lyons, Z. Qian, System Control and Rough Paths, Oxford Math. Monographs, Oxford Science Publications, Clarendon Press, Oxford, 2002. Zbl1029.93001MR2036784
- [16] B.B. Mandelbrot, J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev.10 (1968) 422-437. Zbl0179.47801MR242239
Citations in EuDML Documents
top- Peter Friz, Nicolas Victoir, Large deviation principle for enhanced gaussian processes
- Fabrice Baudoin, Cheng Ouyang, Samy Tindel, Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions
- Peter Friz, Nicolas Victoir, Differential equations driven by gaussian signals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.