Universality for certain hermitian Wigner matrices under weak moment conditions

Kurt Johansson

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 1, page 47-79
  • ISSN: 0246-0203

Abstract

top
We study the universality of the local eigenvalue statistics of Gaussian divisible Hermitian Wigner matrices. These random matrices are obtained by adding an independent GUE matrix to an Hermitian random matrix with independent elements, a Wigner matrix. We prove that Tracy–Widom universality holds at the edge in this class of random matrices under the optimal moment condition that there is a uniform bound on the fourth moment of the matrix elements. Furthermore, we show that universality holds in the bulk for Gaussian divisible Wigner matrices if we just assume finite second moments.

How to cite

top

Johansson, Kurt. "Universality for certain hermitian Wigner matrices under weak moment conditions." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 47-79. <http://eudml.org/doc/272083>.

@article{Johansson2012,
abstract = {We study the universality of the local eigenvalue statistics of Gaussian divisible Hermitian Wigner matrices. These random matrices are obtained by adding an independent GUE matrix to an Hermitian random matrix with independent elements, a Wigner matrix. We prove that Tracy–Widom universality holds at the edge in this class of random matrices under the optimal moment condition that there is a uniform bound on the fourth moment of the matrix elements. Furthermore, we show that universality holds in the bulk for Gaussian divisible Wigner matrices if we just assume finite second moments.},
author = {Johansson, Kurt},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Wigner matrix; gaussian divisible; optimal moment condition; universality; Tracy–Widom distribution; Gaussian divisible; Tracy-Widom distribution},
language = {eng},
number = {1},
pages = {47-79},
publisher = {Gauthier-Villars},
title = {Universality for certain hermitian Wigner matrices under weak moment conditions},
url = {http://eudml.org/doc/272083},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Johansson, Kurt
TI - Universality for certain hermitian Wigner matrices under weak moment conditions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 47
EP - 79
AB - We study the universality of the local eigenvalue statistics of Gaussian divisible Hermitian Wigner matrices. These random matrices are obtained by adding an independent GUE matrix to an Hermitian random matrix with independent elements, a Wigner matrix. We prove that Tracy–Widom universality holds at the edge in this class of random matrices under the optimal moment condition that there is a uniform bound on the fourth moment of the matrix elements. Furthermore, we show that universality holds in the bulk for Gaussian divisible Wigner matrices if we just assume finite second moments.
LA - eng
KW - Wigner matrix; gaussian divisible; optimal moment condition; universality; Tracy–Widom distribution; Gaussian divisible; Tracy-Widom distribution
UR - http://eudml.org/doc/272083
ER -

References

top
  1. [1] A. Auffinger, G. Ben Arous and S. Péché. Poisson convergence for the largest eigenvalues of heavy-taled matrices. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 589–610. Zbl1177.15037MR2548495
  2. [2] Z. D. Bai. Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices. Ann. Probab. 21 (1993) 625–648. Zbl0779.60024MR1217559
  3. [3] Z. D. Bai. Methodologies in spectral analysis of large dimensional random matrices, a review. Statist. Sinica9 (1999) 611–677. Zbl0949.60077MR1711663
  4. [4] Z. D. Bai, B. Miao and J. Tsay. Convergence rates of the spectral distribution of large Wigner matrices. Int. Math. J.1 (2002) 65–90. Zbl0987.60050MR1825933
  5. [5] Z. D. Bai and J. W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2010. Zbl1301.60002MR2567175
  6. [6] G. Ben Arous and A. Guionnet. The spectrum of heavy-tailed random matrices. Comm. Math. Phys.278 (2008) 715–751. Zbl1157.60005MR2373441
  7. [7] G. Ben Arous and S. Péché. Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math.58 (2005) 1316–1357. Zbl1075.62014MR2162782
  8. [8] G. Biroli, J.-P. Bouchaud and M. Potters. On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. 78 (2007) 10001. Zbl1244.82029MR2371333
  9. [9] E. Brézin and S. Hikami. Spectral form factor in a random matrix theory. Phys. Rev. E55 (1997) 4067–4083. MR1449379
  10. [10] P. Cizeau and J.-P. Bouchaud. Theory of Lévy matrices. Phys. Rev. E50 (1994) 1810–1822. 
  11. [11] L. Erdös, S. Péché, J. Ramirez, B. Schlein and H.-T. Yau. Bulk universality for Wigner matrices. Comm. Pure Appl. Math.63 (2010) 895–925. Zbl1216.15025MR2662426
  12. [12] L. Erdös, J. Ramirez, B. Schlein, T. Tao, V. Vu and H.-T. Yau. Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett.17 (2010) 667–674. Zbl1277.15027MR2661171
  13. [13] A. Guionnet and O. Zeitouni. Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5 (2000) 119–136 (electronic). Zbl0969.15010MR1781846
  14. [14] K. Johansson. Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys.215 (2001) 683–705. Zbl0978.15020MR1810949
  15. [15] K. Johansson. Discrete polynuclear growth and determinantal processes. Comm. Math. Phys.242 (2003) 277–329. Zbl1031.60084MR2018275
  16. [16] A. Ruzmaikina. Universality of the edge distribution of the eigenvalues of Wigner random matrices with polynomially decaying distributions of entries. Comm. Math. Phys.261 (2006) 277–296. Zbl1130.82313MR2191882
  17. [17] T. Shcherbina. On universality of bulk local regime of the deformed Gaussian Unitary Ensemble. J. Math. Phys. Anal. Geom.5 (2009) 396–433. Zbl1219.82094MR2590774
  18. [18] T. Shcherbina. On universality of local edge regime for the deformed Gaussian Uniraty Ensemble. J. Stat. Phys.143 (2011) 455–481. Zbl1219.82094MR2799948
  19. [19] B. Simon. Trace Ideals and Their Applications, 2nd edition. Math. Surveys Monogr. 120. Amer. Math. Soc., Providence, RI, 2005. Zbl1074.47001MR2154153
  20. [20] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys.207 (1999) 697–733. Zbl1062.82502MR1727234
  21. [21] A. Soshnikov. Poisson statistics for the largest eigenvaluet of Wigner matrices with heavy tails. Electron. Commun. Probab.9 (2004) 82–91. Zbl1060.60013MR2081462
  22. [22] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys.298 (2010) 549–572. Zbl1202.15038MR2669449
  23. [23] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics. Acta Math.206 (2011) 127–204. Zbl1217.15043MR2784665
  24. [24] T. Tao and V. Vu. Random covariance matrices: Universality of local statistics of eigenvalues. Available at arXiv:0912.0966. Zbl1247.15036MR2962092

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.