Perturbing the hexagonal circle packing: a percolation perspective
Itai Benjamini; Alexandre Stauffer
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 4, page 1141-1157
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBenjamini, Itai, and Stauffer, Alexandre. "Perturbing the hexagonal circle packing: a percolation perspective." Annales de l'I.H.P. Probabilités et statistiques 49.4 (2013): 1141-1157. <http://eudml.org/doc/272086>.
@article{Benjamini2013,
abstract = {We consider the hexagonal circle packing with radius $1/2$ and perturb it by letting the circles move as independent Brownian motions for time $t$. It is shown that, for large enough $t$, if $\varPi _\{t\}$ is the point process given by the center of the circles at time $t$, then, as $t\rightarrow \infty $, the critical radius for circles centered at $\varPi _\{t\}$ to contain an infinite component converges to that of continuum percolation (which was shown – based on a Monte Carlo estimate – by Balister, Bollobás and Walters to be strictly bigger than $1/2$). On the other hand, for small enough $t$, we show (using a Monte Carlo estimate for a fixed but high dimensional integral) that the union of the circles contains an infinite connected component. We discuss some extensions and open problems.},
author = {Benjamini, Itai, Stauffer, Alexandre},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {hexagonal circle packing; brownian motion; continuum percolation; Brownian motion},
language = {eng},
number = {4},
pages = {1141-1157},
publisher = {Gauthier-Villars},
title = {Perturbing the hexagonal circle packing: a percolation perspective},
url = {http://eudml.org/doc/272086},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Benjamini, Itai
AU - Stauffer, Alexandre
TI - Perturbing the hexagonal circle packing: a percolation perspective
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 1141
EP - 1157
AB - We consider the hexagonal circle packing with radius $1/2$ and perturb it by letting the circles move as independent Brownian motions for time $t$. It is shown that, for large enough $t$, if $\varPi _{t}$ is the point process given by the center of the circles at time $t$, then, as $t\rightarrow \infty $, the critical radius for circles centered at $\varPi _{t}$ to contain an infinite component converges to that of continuum percolation (which was shown – based on a Monte Carlo estimate – by Balister, Bollobás and Walters to be strictly bigger than $1/2$). On the other hand, for small enough $t$, we show (using a Monte Carlo estimate for a fixed but high dimensional integral) that the union of the circles contains an infinite connected component. We discuss some extensions and open problems.
LA - eng
KW - hexagonal circle packing; brownian motion; continuum percolation; Brownian motion
UR - http://eudml.org/doc/272086
ER -
References
top- [1] N. Alon and J. H. Spencer. The Probabilistic Method, 3rd edition. Wiley, Hoboken, NJ, 2008. Zbl1148.05001MR2437651
- [2] P. Balister, B. Bollobás and M. Walters. Continuum percolation with steps in the square or the disc. Random Structures Algorithms26 (2005) 392–403. Zbl1072.60083MR2139873
- [3] B. Bollobás and O. Riordan. Percolation. Cambridge Univ. Press, Cambridge, UK, 2006. MR2283880
- [4] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups, 3rd edition. Springer, New York, 1999. Zbl0915.52003MR1662447
- [5] G. Grimmett. Percolation, 2nd edition. Springer, Berlin, 1999. MR1707339
- [6] J. B. Hough, M. Krishnapur, Y. Peres and B. Virág. Zeros of Gaussian Analytic Functions and Determinantal Point Processes. Am. Math. Soc., Providence, 2009. Zbl1190.60038MR2552864
- [7] T. M. Liggett, R. H. Schonmann and A. M. Stacey. Domination by product measures. Ann. Probab.25 (1997) 71–95. Zbl0882.60046MR1428500
- [8] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simulation8 (1998) 3–30. Zbl0917.65005
- [9] R. Meester and R. Roy. Continuum Percolation. Cambridge Univ. Press, Cambridge, UK, 1996. Zbl0858.60092MR1409145
- [10] P. Mörters and Y. Peres. Brownian Motion. Cambridge Univ. Press, New York, NY, 2010. MR2604525
- [11] M. Penrose. Random Geometric Graphs. Oxford Univ. Press, New York, NY, 2003. Zbl1029.60007MR1986198
- [12] M. Penrose and A. Pisztora. Large deviations for discrete and continuous percolation. Adv. Appl. Probab.28 (1996) 29–52. Zbl0853.60085MR1372330
- [13] Y. Peres, A. Sinclair, P. Sousi and A. Stauffer. Mobile geometric graphs: Detection, coverage and percolation. In Proceedings of the 22st ACM-SIAM Symposium on Discrete Algorithms (SODA) 412–428. SIAM, Philadelphia, PA, 2011. Zbl1273.82060MR2857136
- [14] A. Sinclair and A. Stauffer. Mobile geometric graphs, and detection and communication problems in mobile wireless networks. Preprint, 2010. Available at arXiv:1005.1117v2.
- [15] A. Stauffer. Space–time percolation and detection by mobile nodes. Preprint, 2011. Available at arXiv:1108.6322v2. Zbl1331.82046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.