Zero Krengel entropy does not kill Poisson entropy
Élise Janvresse; Thierry de la Rue
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 2, page 368-376
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Aaronson and K. K. Park. Predictability, entropy and information of infinite transformations. Fund. Math.206 (2009) 1–21. Zbl1187.37014MR2576257
- [2] P. Billingsley. Probability and Measure, 2nd edition. Wiley, New York, 1986. Zbl0411.60001MR830424
- [3] É. Janvresse, T. Meyerovitch, E. Roy and T. de la Rue. Poisson suspensions and entropy for infinite transformations. Trans. Amer. Math. Soc.362 (2010) 3069–3094. Zbl1196.37015MR2592946
- [4] U. Krengel. Entropy of conservative transformations. Z. Wahrsch. Verw. Gebiete7 (1967) 161–181. Zbl0183.19303MR218522
- [5] U. Krengel. On certain analogous difficulties in the investigation of flows in a probability space and of transformations in an infinite measure space. In Functional Analysis (Proc. Sympos., Monterey, CA, 1969) 75–91. Academic Press, New York, 1969. Zbl0268.28010MR265558
- [6] D. S. Ornstein. Ergodic Theory, Randomness, and Dynamical Systems. Yale Univ. Press, New Haven, CT, 1974. Zbl0296.28016MR447525
- [7] W. Parry. Entropy and Generators in Ergodic Theory. W. A. Benjamin, New York, 1969. Zbl0175.34001MR262464
- [8] E. Roy. Mesures de poisson, infinie divisibilité et propriétés ergodiques. Ph.D. thesis, 2005.
- [9] P. C. Shields. The Ergodic Theory of Discrete Sample Paths. Graduate Studies in Mathematics 13. Amer. Math. Soc. Providence, RI, 1996. Zbl0879.28031MR1400225