Zero Krengel entropy does not kill Poisson entropy
Élise Janvresse; Thierry de la Rue
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 2, page 368-376
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJanvresse, Élise, and de la Rue, Thierry. "Zero Krengel entropy does not kill Poisson entropy." Annales de l'I.H.P. Probabilités et statistiques 48.2 (2012): 368-376. <http://eudml.org/doc/272088>.
@article{Janvresse2012,
abstract = {We prove that the notions of Krengel entropy and Poisson entropy for infinite-measure-preserving transformations do not always coincide: We construct a conservative infinite-measure-preserving transformation with zero Krengel entropy (the induced transformation on a set of measure 1 is the Von Neumann–Kakutani odometer), but whose associated Poisson suspension has positive entropy.},
author = {Janvresse, Élise, de la Rue, Thierry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Krengel entropy; Poisson suspension; infinite-measure-preserving transformation; d̄-distance; infinite measure-preserving transformation; -distance},
language = {eng},
number = {2},
pages = {368-376},
publisher = {Gauthier-Villars},
title = {Zero Krengel entropy does not kill Poisson entropy},
url = {http://eudml.org/doc/272088},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Janvresse, Élise
AU - de la Rue, Thierry
TI - Zero Krengel entropy does not kill Poisson entropy
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 368
EP - 376
AB - We prove that the notions of Krengel entropy and Poisson entropy for infinite-measure-preserving transformations do not always coincide: We construct a conservative infinite-measure-preserving transformation with zero Krengel entropy (the induced transformation on a set of measure 1 is the Von Neumann–Kakutani odometer), but whose associated Poisson suspension has positive entropy.
LA - eng
KW - Krengel entropy; Poisson suspension; infinite-measure-preserving transformation; d̄-distance; infinite measure-preserving transformation; -distance
UR - http://eudml.org/doc/272088
ER -
References
top- [1] J. Aaronson and K. K. Park. Predictability, entropy and information of infinite transformations. Fund. Math.206 (2009) 1–21. Zbl1187.37014MR2576257
- [2] P. Billingsley. Probability and Measure, 2nd edition. Wiley, New York, 1986. Zbl0411.60001MR830424
- [3] É. Janvresse, T. Meyerovitch, E. Roy and T. de la Rue. Poisson suspensions and entropy for infinite transformations. Trans. Amer. Math. Soc.362 (2010) 3069–3094. Zbl1196.37015MR2592946
- [4] U. Krengel. Entropy of conservative transformations. Z. Wahrsch. Verw. Gebiete7 (1967) 161–181. Zbl0183.19303MR218522
- [5] U. Krengel. On certain analogous difficulties in the investigation of flows in a probability space and of transformations in an infinite measure space. In Functional Analysis (Proc. Sympos., Monterey, CA, 1969) 75–91. Academic Press, New York, 1969. Zbl0268.28010MR265558
- [6] D. S. Ornstein. Ergodic Theory, Randomness, and Dynamical Systems. Yale Univ. Press, New Haven, CT, 1974. Zbl0296.28016MR447525
- [7] W. Parry. Entropy and Generators in Ergodic Theory. W. A. Benjamin, New York, 1969. Zbl0175.34001MR262464
- [8] E. Roy. Mesures de poisson, infinie divisibilité et propriétés ergodiques. Ph.D. thesis, 2005.
- [9] P. C. Shields. The Ergodic Theory of Discrete Sample Paths. Graduate Studies in Mathematics 13. Amer. Math. Soc. Providence, RI, 1996. Zbl0879.28031MR1400225
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.