Modeling flocks and prices: Jumping particles with an attractive interaction
Márton Balázs; Miklós Z. Rácz; Bálint Tóth
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 425-454
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. P. Arguin. Competing particle systems and the Ghirlanda–Guerra identities. Electron. J. Probab.13 (2008) 2101–2117. Zbl1192.60103MR2461537
- [2] L. P. Arguin and M. Aizenman. On the structure of quasi-stationary competing particle systems. Ann. Probab.37 (2009) 1080–1113. Zbl1177.60050MR2537550
- [3] M. Balázs, M. Z. Rácz, and B. Tóth. Modeling flocks and prices: Jumping particles with an attractive interaction. Preprint, 2011. Available at arXiv:1107.3289. Zbl1302.60130
- [4] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. USA105 (2008) 1232–1237.
- [5] A. D. Banner, R. Fernholz and I. Karatzas. Atlas models of equity markets. Ann. Appl. Probab.15 (2005) 2296–2330. Zbl1099.91056MR2187296
- [6] D. Ben-Avraham, S. N. Majumdar and S. Redner. A toy model of the rat race. J. Stat. Mech. Theory Exp. 2007 (2007) L04002.
- [7] E. Bertin. Global fluctuations and Gumbel statistics. Phys. Rev. Lett. 95 (2005) 170601.
- [8] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics. Wiley, New York, 1999. Zbl0172.21201MR1700749
- [9] S. Chatterjee and S. Pal. A phase transition behavior for Brownian motions interacting through their ranks. Probab. Theory Related Fields147 (2009) 123–159. Zbl1188.60049MR2594349
- [10] M. Clusel and E. Bertin. Global fluctuations in physical systems: A subtle interplay between sum and extreme value statistics. Internat. J. Modern Phys. B22 (2008) 3311–3368. Zbl1145.82304MR2446819
- [11] A. Czirók, A. L. Barabási and T. Vicsek. Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Phys. Rev. Lett.82 (1999) 209–212.
- [12] J. Engländer. The center of mass for spatial branching processes and an application for self-interaction. Electron. J. Probab.15 (2010) 1938–1970. Zbl1226.60118MR2738344
- [13] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986. Zbl1089.60005MR838085
- [14] J. Feng and T. G. Kurtz. Large Deviations for Stochastic Processes, Mathematical Surveys and Monographs 131. Amer. Math. Soc., Providence, RI, 2006. Zbl1113.60002MR2260560
- [15] E. R. Fernholz. Stochastic Portfolio Theory. Springer, New York, 2002. Zbl1049.91067MR1894767
- [16] E. R. Fernholz and I. Karatzas. Stochastic portfolio theory: An overview. In Handbook of Numerical Analysis 15 89–167. Elsevier, Amsterdam, 2009. Zbl1180.91267
- [17] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics. International Statistical Review70 (2002) 419–435. Zbl1217.62014
- [18] A. G. Greenberg, V. A. Malyshev and S. Y. Popov. Stochastic models of massively parallel computation. Markov Process. Related Fields1 (1995) 473–490. Zbl0902.60072MR1403093
- [19] A. Greven and F. D. Hollander. Phase transitions for the long-time behaviour of interacting diffusions. Ann. Probab.35 (2007) 1250–1306. Zbl1126.60085MR2330971
- [20] I. Grigorescu and M. Kang. Steady state and scaling limit for a traffic congestion model. ESAIM Probab. Stat.14 (2010) 271–285. Zbl1227.60108MR2779484
- [21] E. J. Gumbel. Statistics of Extremes. Dover, New York, 1958. Zbl1113.62057MR96342
- [22] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin, 2003. Zbl0635.60021MR1943877
- [23] P. M. Kotelenez and T. G. Kurtz. Macroscopic limits for stochastic partial differential equations of McKean–Vlasov type. Probab. Theory Related Fields146 (2010) 189–222. Zbl1189.60123MR2550362
- [24] A. Manita and V. Shcherbakov. Asymptotic analysis of a particle system with mean-field interaction. Markov Process. Related Fields11 (2005) 489–518. Zbl1099.60073MR2175025
- [25] S. Pal and J. Pitman. One-dimensional Brownian particle systems with rank dependent drifts. Ann. Appl. Probab.18 (2008) 2179–2207. Zbl1166.60061MR2473654
- [26] E. A. Perkins. Dawson–Watanabe superprocesses and measure-valued diffusions. In Lectures on Probability Theory and Statistics (Saint-Flour, 1999) 125–324 Lecture. Notes in Math. 1781. Springer, Berlin, 2002. Zbl1020.60075
- [27] A. Ruzmaikina and M. Aizenman. Characterization of invariant measures at the leading edge for competing particle systems. Ann. Probab.33 (2005) 82–113. Zbl1096.60042MR2118860
- [28] M. Shkolnikov. Competing particle systems evolving by IID increments. Electron. J. Probab.14 (2009) 728–751. Zbl1190.60039MR2486819
- [29] M. Shkolnikov. Competing particle systems evolving by interacting Levy processes. Ann. Appl. Probab.21 (2011) 1911–1932. Zbl1238.60113MR2884054
- [30] M. Shkolnikov. Large volatility-stabilized markets. Preprint, 2011. Available at arXiv:1102.3461. Zbl1288.60092MR2988116
- [31] M. Shkolnikov. Large systems of diffusions interacting through their ranks. Stochastic Process. Appl.122 (2012) 1730–1747. Zbl1276.60087MR2914770
- [32] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett.75 (1995) 1226–1229.
- [33] S. Willard. General Topology. Dover, New York, 2004. Zbl1052.54001MR2048350