Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes

Milton Jara; Claudio Landim; Sunder Sethuraman

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 3, page 611-637
  • ISSN: 0246-0203

Abstract

top
Nonequilibrium fluctuations of a tagged, or distinguished particle in a class of one dimensional mean-zero zero-range systems with sublinear, increasing rates are derived. In Jara–Landim–Sethuraman (Probab. Theory Related Fields145 (2009) 565–590), processes with at least linear rates are considered. A different approach to establish a main “local replacement” limit is required for sublinear rate systems, given that their mixing properties are much different. The method discussed also allows to capture the fluctuations of a “second-class” particle in unit rate, symmetric zero-range models.

How to cite

top

Jara, Milton, Landim, Claudio, and Sethuraman, Sunder. "Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 611-637. <http://eudml.org/doc/272093>.

@article{Jara2013,
abstract = {Nonequilibrium fluctuations of a tagged, or distinguished particle in a class of one dimensional mean-zero zero-range systems with sublinear, increasing rates are derived. In Jara–Landim–Sethuraman (Probab. Theory Related Fields145 (2009) 565–590), processes with at least linear rates are considered. A different approach to establish a main “local replacement” limit is required for sublinear rate systems, given that their mixing properties are much different. The method discussed also allows to capture the fluctuations of a “second-class” particle in unit rate, symmetric zero-range models.},
author = {Jara, Milton, Landim, Claudio, Sethuraman, Sunder},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting; particle system; zero-range; tagged; nonequilibrium; diffusion},
language = {eng},
number = {3},
pages = {611-637},
publisher = {Gauthier-Villars},
title = {Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes},
url = {http://eudml.org/doc/272093},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Jara, Milton
AU - Landim, Claudio
AU - Sethuraman, Sunder
TI - Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 611
EP - 637
AB - Nonequilibrium fluctuations of a tagged, or distinguished particle in a class of one dimensional mean-zero zero-range systems with sublinear, increasing rates are derived. In Jara–Landim–Sethuraman (Probab. Theory Related Fields145 (2009) 565–590), processes with at least linear rates are considered. A different approach to establish a main “local replacement” limit is required for sublinear rate systems, given that their mixing properties are much different. The method discussed also allows to capture the fluctuations of a “second-class” particle in unit rate, symmetric zero-range models.
LA - eng
KW - interacting; particle system; zero-range; tagged; nonequilibrium; diffusion
UR - http://eudml.org/doc/272093
ER -

References

top
  1. [1] A. De Masi and E. Presutti. Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Mathematics 1501. Springer, Berlin, 1991. Zbl0754.60122MR1175626
  2. [2] M. R. Evans and T. Hanney. Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math. Gen. 38 (2005) 195–240. Zbl1086.82012MR2145800
  3. [3] I. Grigorescu. Self-diffusion for Brownian motions with local interaction. Ann. Probab.27 (1999) 1208–1267. Zbl0961.60099MR1733146
  4. [4] M. D. Jara. Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Commun. Pure Appl. Math.62 (2009) 198–214. Zbl1153.82015MR2468608
  5. [5] M. Jara and C. Landim. Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat.42 (2006) 567–577. Zbl1101.60080MR2259975
  6. [6] M. Jara, C. Landim and S. Sethuraman. Nonequilibrium fluctuations for a tagged particle in mean-zero one dimensional zero-range processes. Probab. Theory Related Fields145 (2009) 565–590. Zbl1185.60113MR2529439
  7. [7] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 320. Springer, Berlin, 1999. Zbl0927.60002MR1707314
  8. [8] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible markov processes. Comm. Math. Phys.104 (1986) 1–19. Zbl0588.60058MR834478
  9. [9] T. Komorowski, C. Landim and S. Olla. Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Berlin, 2012. Zbl06028501MR2952852
  10. [10] C. Landim, S. Sethuraman and S. R. S. Varadhan. Spectral gap for zero range dynamics. Ann. Probab.24 (1996) 1871–1902. Zbl0870.60095MR1415232
  11. [11] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. Zbl0559.60078MR776231
  12. [12] B. Morris. Spectral gap for the zero range process with constant rate. Ann. Probab.34 (2006) 1645–1664. Zbl1111.60077MR2271475
  13. [13] Y. Nagahata. Spectral gap for zero-range processes with jump rate g ( x ) = x γ . Stochastic Process Appl.120 (2010) 949–958. Zbl1195.60127MR2610333
  14. [14] S. C. Port and C. J. Stone. Infinite particle systems. Trans. Amer. Math. Soc.178 (1973) 307–340. Zbl0283.60057MR326868
  15. [15] F. Rezakhanlou. Propagation of chaos for symmetric simple exclusions. Commun. Pure Appl. Math.47 (1994) 943–957. Zbl0808.60083MR1283878
  16. [16] E. Saada. Processus de zero-range avec particule marquée. Ann. Inst. Henri Poincaré Probab. Stat.26 (1990) 5–17. Zbl0703.60101MR1075436
  17. [17] S. Sethuraman. On diffusivity of a tagged particle in asymmetric zero-range dynamics. Ann. Inst. Henri Poincaré Probab. Stat.43 (2007) 215–232. Zbl1112.60084MR2303120
  18. [18] H. Spohn. Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. Zbl0742.76002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.