Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes
Milton Jara; Claudio Landim; Sunder Sethuraman
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 3, page 611-637
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJara, Milton, Landim, Claudio, and Sethuraman, Sunder. "Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 611-637. <http://eudml.org/doc/272093>.
@article{Jara2013,
abstract = {Nonequilibrium fluctuations of a tagged, or distinguished particle in a class of one dimensional mean-zero zero-range systems with sublinear, increasing rates are derived. In Jara–Landim–Sethuraman (Probab. Theory Related Fields145 (2009) 565–590), processes with at least linear rates are considered. A different approach to establish a main “local replacement” limit is required for sublinear rate systems, given that their mixing properties are much different. The method discussed also allows to capture the fluctuations of a “second-class” particle in unit rate, symmetric zero-range models.},
author = {Jara, Milton, Landim, Claudio, Sethuraman, Sunder},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting; particle system; zero-range; tagged; nonequilibrium; diffusion},
language = {eng},
number = {3},
pages = {611-637},
publisher = {Gauthier-Villars},
title = {Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes},
url = {http://eudml.org/doc/272093},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Jara, Milton
AU - Landim, Claudio
AU - Sethuraman, Sunder
TI - Nonequilibrium fluctuations for a tagged particle in one-dimensional sublinear zero-range processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 611
EP - 637
AB - Nonequilibrium fluctuations of a tagged, or distinguished particle in a class of one dimensional mean-zero zero-range systems with sublinear, increasing rates are derived. In Jara–Landim–Sethuraman (Probab. Theory Related Fields145 (2009) 565–590), processes with at least linear rates are considered. A different approach to establish a main “local replacement” limit is required for sublinear rate systems, given that their mixing properties are much different. The method discussed also allows to capture the fluctuations of a “second-class” particle in unit rate, symmetric zero-range models.
LA - eng
KW - interacting; particle system; zero-range; tagged; nonequilibrium; diffusion
UR - http://eudml.org/doc/272093
ER -
References
top- [1] A. De Masi and E. Presutti. Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Mathematics 1501. Springer, Berlin, 1991. Zbl0754.60122MR1175626
- [2] M. R. Evans and T. Hanney. Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math. Gen. 38 (2005) 195–240. Zbl1086.82012MR2145800
- [3] I. Grigorescu. Self-diffusion for Brownian motions with local interaction. Ann. Probab.27 (1999) 1208–1267. Zbl0961.60099MR1733146
- [4] M. D. Jara. Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Commun. Pure Appl. Math.62 (2009) 198–214. Zbl1153.82015MR2468608
- [5] M. Jara and C. Landim. Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat.42 (2006) 567–577. Zbl1101.60080MR2259975
- [6] M. Jara, C. Landim and S. Sethuraman. Nonequilibrium fluctuations for a tagged particle in mean-zero one dimensional zero-range processes. Probab. Theory Related Fields145 (2009) 565–590. Zbl1185.60113MR2529439
- [7] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 320. Springer, Berlin, 1999. Zbl0927.60002MR1707314
- [8] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible markov processes. Comm. Math. Phys.104 (1986) 1–19. Zbl0588.60058MR834478
- [9] T. Komorowski, C. Landim and S. Olla. Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Berlin, 2012. Zbl06028501MR2952852
- [10] C. Landim, S. Sethuraman and S. R. S. Varadhan. Spectral gap for zero range dynamics. Ann. Probab.24 (1996) 1871–1902. Zbl0870.60095MR1415232
- [11] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. Zbl0559.60078MR776231
- [12] B. Morris. Spectral gap for the zero range process with constant rate. Ann. Probab.34 (2006) 1645–1664. Zbl1111.60077MR2271475
- [13] Y. Nagahata. Spectral gap for zero-range processes with jump rate . Stochastic Process Appl.120 (2010) 949–958. Zbl1195.60127MR2610333
- [14] S. C. Port and C. J. Stone. Infinite particle systems. Trans. Amer. Math. Soc.178 (1973) 307–340. Zbl0283.60057MR326868
- [15] F. Rezakhanlou. Propagation of chaos for symmetric simple exclusions. Commun. Pure Appl. Math.47 (1994) 943–957. Zbl0808.60083MR1283878
- [16] E. Saada. Processus de zero-range avec particule marquée. Ann. Inst. Henri Poincaré Probab. Stat.26 (1990) 5–17. Zbl0703.60101MR1075436
- [17] S. Sethuraman. On diffusivity of a tagged particle in asymmetric zero-range dynamics. Ann. Inst. Henri Poincaré Probab. Stat.43 (2007) 215–232. Zbl1112.60084MR2303120
- [18] H. Spohn. Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. Zbl0742.76002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.