Decay of covariances, uniqueness of ergodic component and scaling limit for a class of systems with non-convex potential
Codina Cotar; Jean-Dominique Deuschel
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 3, page 819-853
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCotar, Codina, and Deuschel, Jean-Dominique. "Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 819-853. <http://eudml.org/doc/272098>.
@article{Cotar2012,
abstract = {We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for $\nabla \phi $-Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.},
author = {Cotar, Codina, Deuschel, Jean-Dominique},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {effective non-convex gradient interface models; uniqueness of ergodic component; decay of covariances; scaling limit; surface tension},
language = {eng},
number = {3},
pages = {819-853},
publisher = {Gauthier-Villars},
title = {Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential},
url = {http://eudml.org/doc/272098},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Cotar, Codina
AU - Deuschel, Jean-Dominique
TI - Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 819
EP - 853
AB - We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for $\nabla \phi $-Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.
LA - eng
KW - effective non-convex gradient interface models; uniqueness of ergodic component; decay of covariances; scaling limit; surface tension
UR - http://eudml.org/doc/272098
ER -
References
top- [1] S. Adams, R. Kotecký and S. Müller. Unpublished manuscript.
- [2] M. Biskup and R. Kotecký. Phase coexistence of gradient Gibbs states. Probab. Theory Related Fields139 (2007) 1–39. Zbl1120.82003MR2322690
- [3] M. Biskup and M. Spohn. Scaling limit for a class of gradient fields with non-convex potentials. Ann. Probab.39 (2011) 224–251. Zbl1222.60076MR2778801
- [4] D. Boivin and Y. Derriennic. The ergodic theorem for additive cocycles of or . Ergodic Theory Dynam. Systems11 (1991) 19–39. Zbl0723.60008MR1101082
- [5] H. J. Brascamp, J. L. Lebowitz and E. H. Lieb. The statistical mechanics of anharmonic lattices. In Proceedings of the 40th Session of the International Statistics Institute 393–404. 1975. Zbl0357.60051MR676341
- [6] D. Brydges. Lectures on the renormalization group. In Statistical Mechanics 7–93. S. Sheffield and T. Spencer (Eds). IAS/Park City Mathematics Ser. Amer. Math. Soc., Provodence, RI, 2009. Zbl1186.82033MR2523458
- [7] D. Brydges and H. T. Yau. Grad perturbations of massless Gaussian fields. Comm. Math. Phys.129 (1990) 351–392. Zbl0705.60101MR1048698
- [8] C. Cotar, J. D. Deuschel and S. Müller. Strict convexity of the free energy for non-convex gradient models at moderate . Comm. Math. Phys.286 (2009) 359–376. Zbl1173.82010MR2470934
- [9] C. Cotar and C. Külske. Existence of random gradient states. Ann. Appl. Probab.22 (2012) 1650–1692. Zbl1254.60095MR2985173
- [10] C. Cotar and C. Külske. Uniqueness of random gradient states. Unpublished manuscript. Zbl1254.60095
- [11] T. Delmotte and J. D. Deuschel. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to interface model. Probab. Theory Related Fields133 (2005) 358–390. Zbl1083.60082MR2198017
- [12] J. D. Deuschel. Algebraic decay of attractive critical processes on the lattice. Ann. Probab.22 (1994) 264–283. Zbl0811.60089MR1258877
- [13] J. D. Deuschel. The random walk representation for interacting diffusion processes. In Interacting Stochastic Systems 377–393. Springer, Berlin, 2005. Zbl1111.82049MR2118583
- [14] J. D. Deuschel, G. Giacomin and D. Ioffe. Large deviations and concentration properties for interface models. Probab. Theory Related Fields117 (2000) 49–111. Zbl0988.82018MR1759509
- [15] J. Fröhlich and C. Pfister. On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Comm. Math. Phys.81 (1981) 277–298. MR632763
- [16] J. Fröhlich, B. Simon and T. Spencer. Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys.50 (1976) 79–95. MR421531
- [17] J. Fröhlich and T. Spencer. The Kosterlitz–Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Comm. Math. Phys.81 (1981) 527–602. MR634447
- [18] J. Fröhlich and T. Spencer. On the statistical mechanics of Coulomb and dipole gases. J. Stat. Phys.24 (1981) 617–701. MR610687
- [19] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg–Landau interface model. Comm. Math. Phys.185 (1997) 1–36. Zbl0884.58098MR1463032
- [20] T. Funaki. Stochastic interface models. In Lectures on Probability Theory and Statistics 102–274. Lect. Notes in Math. 1869. Springer, Berlin, 2005. Zbl1119.60081MR2228384
- [21] H.-O. Georgii. Gibbs Measures and Phase Transitions. De Gruyer, Berlin, 1988. Zbl1225.60001MR956646
- [22] G. Giacomin, S. Olla and H. Spohn. Equilibrium fluctuations for interface model. Ann. Probab.29 (2001) 1138–1172. Zbl1017.60100MR1872740
- [23] B. Helffer and J. Sjöstrand. On the correlation for Kac-like models in the convex case. J. Stat. Phys.74 (1994) 349–409. Zbl0946.35508MR1257821
- [24] S. Louhichi. Rosenthal’s inequality for LPQD sequences. Statist. Probab. Lett.42 (1999) 139–144. Zbl0931.60007MR1680098
- [25] A. Naddaf and T. Spencer. On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys.183 (1997) 55–84. Zbl0871.35010MR1461951
- [26] S. Sheffield. Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications. Asterisque 304. SMF, Paris, 2005. Zbl1104.60002MR2251117
- [27] Y. Velenik. Localization and delocalization of random interfaces. Probab. Surv.3 (2006) 112–169. Zbl1189.82051MR2216964
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.