Decay of covariances, uniqueness of ergodic component and scaling limit for a class of φ systems with non-convex potential

Codina Cotar; Jean-Dominique Deuschel

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 3, page 819-853
  • ISSN: 0246-0203

Abstract

top
We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for φ -Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.

How to cite

top

Cotar, Codina, and Deuschel, Jean-Dominique. "Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 819-853. <http://eudml.org/doc/272098>.

@article{Cotar2012,
abstract = {We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for $\nabla \phi $-Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.},
author = {Cotar, Codina, Deuschel, Jean-Dominique},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {effective non-convex gradient interface models; uniqueness of ergodic component; decay of covariances; scaling limit; surface tension},
language = {eng},
number = {3},
pages = {819-853},
publisher = {Gauthier-Villars},
title = {Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential},
url = {http://eudml.org/doc/272098},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Cotar, Codina
AU - Deuschel, Jean-Dominique
TI - Decay of covariances, uniqueness of ergodic component and scaling limit for a class of $\nabla \phi $ systems with non-convex potential
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 819
EP - 853
AB - We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for $\nabla \phi $-Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.
LA - eng
KW - effective non-convex gradient interface models; uniqueness of ergodic component; decay of covariances; scaling limit; surface tension
UR - http://eudml.org/doc/272098
ER -

References

top
  1. [1] S. Adams, R. Kotecký and S. Müller. Unpublished manuscript. 
  2. [2] M. Biskup and R. Kotecký. Phase coexistence of gradient Gibbs states. Probab. Theory Related Fields139 (2007) 1–39. Zbl1120.82003MR2322690
  3. [3] M. Biskup and M. Spohn. Scaling limit for a class of gradient fields with non-convex potentials. Ann. Probab.39 (2011) 224–251. Zbl1222.60076MR2778801
  4. [4] D. Boivin and Y. Derriennic. The ergodic theorem for additive cocycles of d or d . Ergodic Theory Dynam. Systems11 (1991) 19–39. Zbl0723.60008MR1101082
  5. [5] H. J. Brascamp, J. L. Lebowitz and E. H. Lieb. The statistical mechanics of anharmonic lattices. In Proceedings of the 40th Session of the International Statistics Institute 393–404. 1975. Zbl0357.60051MR676341
  6. [6] D. Brydges. Lectures on the renormalization group. In Statistical Mechanics 7–93. S. Sheffield and T. Spencer (Eds). IAS/Park City Mathematics Ser. Amer. Math. Soc., Provodence, RI, 2009. Zbl1186.82033MR2523458
  7. [7] D. Brydges and H. T. Yau. Grad φ perturbations of massless Gaussian fields. Comm. Math. Phys.129 (1990) 351–392. Zbl0705.60101MR1048698
  8. [8] C. Cotar, J. D. Deuschel and S. Müller. Strict convexity of the free energy for non-convex gradient models at moderate β . Comm. Math. Phys.286 (2009) 359–376. Zbl1173.82010MR2470934
  9. [9] C. Cotar and C. Külske. Existence of random gradient states. Ann. Appl. Probab.22 (2012) 1650–1692. Zbl1254.60095MR2985173
  10. [10] C. Cotar and C. Külske. Uniqueness of random gradient states. Unpublished manuscript. Zbl1254.60095
  11. [11] T. Delmotte and J. D. Deuschel. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to φ interface model. Probab. Theory Related Fields133 (2005) 358–390. Zbl1083.60082MR2198017
  12. [12] J. D. Deuschel. Algebraic L 2 decay of attractive critical processes on the lattice. Ann. Probab.22 (1994) 264–283. Zbl0811.60089MR1258877
  13. [13] J. D. Deuschel. The random walk representation for interacting diffusion processes. In Interacting Stochastic Systems 377–393. Springer, Berlin, 2005. Zbl1111.82049MR2118583
  14. [14] J. D. Deuschel, G. Giacomin and D. Ioffe. Large deviations and concentration properties for φ interface models. Probab. Theory Related Fields117 (2000) 49–111. Zbl0988.82018MR1759509
  15. [15] J. Fröhlich and C. Pfister. On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Comm. Math. Phys.81 (1981) 277–298. MR632763
  16. [16] J. Fröhlich, B. Simon and T. Spencer. Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys.50 (1976) 79–95. MR421531
  17. [17] J. Fröhlich and T. Spencer. The Kosterlitz–Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Comm. Math. Phys.81 (1981) 527–602. MR634447
  18. [18] J. Fröhlich and T. Spencer. On the statistical mechanics of Coulomb and dipole gases. J. Stat. Phys.24 (1981) 617–701. MR610687
  19. [19] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg–Landau φ interface model. Comm. Math. Phys.185 (1997) 1–36. Zbl0884.58098MR1463032
  20. [20] T. Funaki. Stochastic interface models. In Lectures on Probability Theory and Statistics 102–274. Lect. Notes in Math. 1869. Springer, Berlin, 2005. Zbl1119.60081MR2228384
  21. [21] H.-O. Georgii. Gibbs Measures and Phase Transitions. De Gruyer, Berlin, 1988. Zbl1225.60001MR956646
  22. [22] G. Giacomin, S. Olla and H. Spohn. Equilibrium fluctuations for φ interface model. Ann. Probab.29 (2001) 1138–1172. Zbl1017.60100MR1872740
  23. [23] B. Helffer and J. Sjöstrand. On the correlation for Kac-like models in the convex case. J. Stat. Phys.74 (1994) 349–409. Zbl0946.35508MR1257821
  24. [24] S. Louhichi. Rosenthal’s inequality for LPQD sequences. Statist. Probab. Lett.42 (1999) 139–144. Zbl0931.60007MR1680098
  25. [25] A. Naddaf and T. Spencer. On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys.183 (1997) 55–84. Zbl0871.35010MR1461951
  26. [26] S. Sheffield. Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications. Asterisque 304. SMF, Paris, 2005. Zbl1104.60002MR2251117
  27. [27] Y. Velenik. Localization and delocalization of random interfaces. Probab. Surv.3 (2006) 112–169. Zbl1189.82051MR2216964

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.