Local density of diffeomorphisms with large centralizers

Christian Bonatti; Sylvain Crovisier; Gioia M. Vago; Amie Wilkinson

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 6, page 925-954
  • ISSN: 0012-9593

Abstract

top
Given any compact manifold M , we construct a non-empty open subset 𝒪 of the space Diff 1 ( M ) of C 1 -diffeomorphisms and a dense subset 𝒟 𝒪 such that the centralizer of every diffeomorphism in 𝒟 is uncountable, hence non-trivial.

How to cite

top

Bonatti, Christian, et al. "Local density of diffeomorphisms with large centralizers." Annales scientifiques de l'École Normale Supérieure 41.6 (2008): 925-954. <http://eudml.org/doc/272105>.

@article{Bonatti2008,
abstract = {Given any compact manifold $M$, we construct a non-empty open subset $\mathcal \{O\}$ of the space $\mathrm \{Diff\}^1(M)$ of $C^1$-diffeomorphisms and a dense subset $\mathcal \{D\}\subset \mathcal \{O\}$ such that the centralizer of every diffeomorphism in $\mathcal \{D\}$ is uncountable, hence non-trivial.},
author = {Bonatti, Christian, Crovisier, Sylvain, Vago, Gioia M., Wilkinson, Amie},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {trivial centralizer; trivial symmetries; Mather invariant},
language = {eng},
number = {6},
pages = {925-954},
publisher = {Société mathématique de France},
title = {Local density of diffeomorphisms with large centralizers},
url = {http://eudml.org/doc/272105},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Bonatti, Christian
AU - Crovisier, Sylvain
AU - Vago, Gioia M.
AU - Wilkinson, Amie
TI - Local density of diffeomorphisms with large centralizers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 6
SP - 925
EP - 954
AB - Given any compact manifold $M$, we construct a non-empty open subset $\mathcal {O}$ of the space $\mathrm {Diff}^1(M)$ of $C^1$-diffeomorphisms and a dense subset $\mathcal {D}\subset \mathcal {O}$ such that the centralizer of every diffeomorphism in $\mathcal {D}$ is uncountable, hence non-trivial.
LA - eng
KW - trivial centralizer; trivial symmetries; Mather invariant
UR - http://eudml.org/doc/272105
ER -

References

top
  1. [1] V. S. Afraimovich & T. Young, Mather invariants and smooth conjugacy on S 2 , J. Dynam. & Control Systems 6 (2000), 341–352. Zbl1063.37036MR1763673
  2. [2] M.-C. Arnaud, C. Bonatti & S. Crovisier, Dynamiques symplectiques génériques, Ergodic Theory & Dynam. Systems 25 (2005), 1401–1436. Zbl1084.37017MR2173426
  3. [3] A. Banyaga, On the structure of the group of equivariant diffeomorphisms, Topology16 (1977), 279–283. Zbl0359.57032MR494238
  4. [4] C. Bonatti & S. Crovisier, Récurrence et généricité, Invent. Math.158 (2004), 33–104. Zbl1071.37015MR2090361
  5. [5] C. Bonatti, S. Crovisier & A. Wilkinson, The centralizer of a C 1 generic diffeomorphism is trivial, Electron. Res. Announc. Math. Sci.15 (2008), 33–43. Zbl1149.37012MR2407535
  6. [6] C. Bonatti, S. Crovisier & A. Wilkinson, C 1 -generic conservative diffeomorphisms have trivial centralizer, J. Mod. Dyn.2 (2008), 359–373. Zbl1149.37017MR2383272
  7. [7] C. Bonatti, S. Crovisier & A. Wilkinson, The C 1 generic diffeomorphism has trivial centralizer, preprint arXiv:0804.1416, to appear in Publ. Math. I.H.É.S. Zbl1177.37025
  8. [8] C. Bonatti & L. Díaz, On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci.96 (2002), 171–197. Zbl1032.37011MR1985032
  9. [9] C. Bonatti, L. Díaz & E. R. Pujals, A C 1 -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math.158 (2003), 355–418. Zbl1049.37011MR2018925
  10. [10] C. Bonatti, L. Díaz & M. Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Math. Sci. 102, Springer, 2005. Zbl1060.37020MR2105774
  11. [11] B. Farb & J. Franks, Groups of homeomorphisms of one-manifolds. III. Nilpotent subgroups, Ergodic Theory & Dynam. Systems 23 (2003), 1467–1484. Zbl1037.37020MR2018608
  12. [12] N. Kopell, Commuting diffeomorphisms, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., 1970, 165–184. Zbl0225.57020MR270396
  13. [13] J. N. Mather, Commutators of diffeomorphisms, Comment. Math. Helv.49 (1974), 512–528. Zbl0289.57014MR356129
  14. [14] J. Palis, Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc.80 (1974), 503–505. Zbl0296.57008MR348795
  15. [15] S. Smale, Dynamics retrospective: great problems, attempts that failed, Phys. D51 (1991), 267–273. Zbl0745.58018MR1128817
  16. [16] S. Smale, Mathematical problems for the next century, Math. Intelligencer20 (1998), 7–15. Zbl0947.01011MR1631413

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.