# Local density of diffeomorphisms with large centralizers

Christian Bonatti; Sylvain Crovisier; Gioia M. Vago; Amie Wilkinson

Annales scientifiques de l'École Normale Supérieure (2008)

- Volume: 41, Issue: 6, page 925-954
- ISSN: 0012-9593

## Access Full Article

top## Abstract

top## How to cite

topBonatti, Christian, et al. "Local density of diffeomorphisms with large centralizers." Annales scientifiques de l'École Normale Supérieure 41.6 (2008): 925-954. <http://eudml.org/doc/272105>.

@article{Bonatti2008,

abstract = {Given any compact manifold $M$, we construct a non-empty open subset $\mathcal \{O\}$ of the space $\mathrm \{Diff\}^1(M)$ of $C^1$-diffeomorphisms and a dense subset $\mathcal \{D\}\subset \mathcal \{O\}$ such that the centralizer of every diffeomorphism in $\mathcal \{D\}$ is uncountable, hence non-trivial.},

author = {Bonatti, Christian, Crovisier, Sylvain, Vago, Gioia M., Wilkinson, Amie},

journal = {Annales scientifiques de l'École Normale Supérieure},

keywords = {trivial centralizer; trivial symmetries; Mather invariant},

language = {eng},

number = {6},

pages = {925-954},

publisher = {Société mathématique de France},

title = {Local density of diffeomorphisms with large centralizers},

url = {http://eudml.org/doc/272105},

volume = {41},

year = {2008},

}

TY - JOUR

AU - Bonatti, Christian

AU - Crovisier, Sylvain

AU - Vago, Gioia M.

AU - Wilkinson, Amie

TI - Local density of diffeomorphisms with large centralizers

JO - Annales scientifiques de l'École Normale Supérieure

PY - 2008

PB - Société mathématique de France

VL - 41

IS - 6

SP - 925

EP - 954

AB - Given any compact manifold $M$, we construct a non-empty open subset $\mathcal {O}$ of the space $\mathrm {Diff}^1(M)$ of $C^1$-diffeomorphisms and a dense subset $\mathcal {D}\subset \mathcal {O}$ such that the centralizer of every diffeomorphism in $\mathcal {D}$ is uncountable, hence non-trivial.

LA - eng

KW - trivial centralizer; trivial symmetries; Mather invariant

UR - http://eudml.org/doc/272105

ER -

## References

top- [1] V. S. Afraimovich & T. Young, Mather invariants and smooth conjugacy on ${S}^{2}$, J. Dynam. & Control Systems 6 (2000), 341–352. Zbl1063.37036MR1763673
- [2] M.-C. Arnaud, C. Bonatti & S. Crovisier, Dynamiques symplectiques génériques, Ergodic Theory & Dynam. Systems 25 (2005), 1401–1436. Zbl1084.37017MR2173426
- [3] A. Banyaga, On the structure of the group of equivariant diffeomorphisms, Topology16 (1977), 279–283. Zbl0359.57032MR494238
- [4] C. Bonatti & S. Crovisier, Récurrence et généricité, Invent. Math.158 (2004), 33–104. Zbl1071.37015MR2090361
- [5] C. Bonatti, S. Crovisier & A. Wilkinson, The centralizer of a ${C}^{1}$ generic diffeomorphism is trivial, Electron. Res. Announc. Math. Sci.15 (2008), 33–43. Zbl1149.37012MR2407535
- [6] C. Bonatti, S. Crovisier & A. Wilkinson, ${C}^{1}$-generic conservative diffeomorphisms have trivial centralizer, J. Mod. Dyn.2 (2008), 359–373. Zbl1149.37017MR2383272
- [7] C. Bonatti, S. Crovisier & A. Wilkinson, The ${C}^{1}$ generic diffeomorphism has trivial centralizer, preprint arXiv:0804.1416, to appear in Publ. Math. I.H.É.S. Zbl1177.37025
- [8] C. Bonatti & L. Díaz, On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci.96 (2002), 171–197. Zbl1032.37011MR1985032
- [9] C. Bonatti, L. Díaz & E. R. Pujals, A ${C}^{1}$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math.158 (2003), 355–418. Zbl1049.37011MR2018925
- [10] C. Bonatti, L. Díaz & M. Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Math. Sci. 102, Springer, 2005. Zbl1060.37020MR2105774
- [11] B. Farb & J. Franks, Groups of homeomorphisms of one-manifolds. III. Nilpotent subgroups, Ergodic Theory & Dynam. Systems 23 (2003), 1467–1484. Zbl1037.37020MR2018608
- [12] N. Kopell, Commuting diffeomorphisms, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., 1970, 165–184. Zbl0225.57020MR270396
- [13] J. N. Mather, Commutators of diffeomorphisms, Comment. Math. Helv.49 (1974), 512–528. Zbl0289.57014MR356129
- [14] J. Palis, Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc.80 (1974), 503–505. Zbl0296.57008MR348795
- [15] S. Smale, Dynamics retrospective: great problems, attempts that failed, Phys. D51 (1991), 267–273. Zbl0745.58018MR1128817
- [16] S. Smale, Mathematical problems for the next century, Math. Intelligencer20 (1998), 7–15. Zbl0947.01011MR1631413

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.